用传统的化合物优化方法的企业,以及采集互联网和文献数据训练的AI相比在数据上有什么核心差异和优势呢? 回答:在早期药物发现中,通过迭代式的“设计-合成-测试-分析”(DMTA)循环模式来优化分子结构及其各种生物活性以及成药性属性是产生临床前候选化合物的核心。这一循环的推动力量源自于化合物的合成过程产生的数据。传统的DMTA循环通常需要通过人工协调,将化合物的制备工作分配给包括合成、分析、分离、表征和生物评价等高度专业化实验室。然而,这种方式受传统药物化学效率的限制,给多化合物批次性的同步整体数据驱动的药物优化带来了一定困难。因此,提供更多、更快、更高质量、更加及时的数据解决方案成为优化药物发现技术的关键,从而加速对临床前候选分子的评估过程。 成都先导一直持续关注并不断探索AI在创新药物发现及优化上的应用。公司自主设计并搭建了一个全方位的化合物优化平台,该平台整合利用自动化平行合成、自动化分析与高通量纯化、自动化高通量制板等行业前沿技术,同时结合AI/ML数据驱动的合成路线规划,以迭代式的“设计-合成-测试-分析”(DMTA)循环模式加速临床前候选药物发现及优化过程。 成都先导的DEL+AI+高通量DMTA平台的特点在于:应用了DEL在新分子构建和发现上的优势,大量的难成药靶点发现了全新结构的活性分子,目前已有超53类靶点类型、数百个DEL筛选项目的真实实验数据(这些数据在公域无法获得),这些数据:1)均为在标准流程下产生的高质量实验数据;2)实验数据不依赖于蛋白质的三维结构;3)筛选靶点均为药物行业在研靶点,并且多样性丰富。因此,公司将多年积累的DEL筛选海量数据用于机器学习(ML)、AI大模型的训练和迭代,可以更加有效地在非DEL空间预测化合物活性、成药性等,进一步扩大可探索的化合物空间以及加快化合物的优化过程。DEL技术产生的高质量的真实实验数据,为AI训练提供了可靠且独特的数据资源,再加上高通量的DMTA平台快速高效的运转,干湿实验室的结合,可以让AI的结果快速验证以及产生新的数据促进AI的升级。因而能形成从靶点开始,到苗头化合物产生,再到先导化合物优化至临床前候选物这一链条的完整的数据流,以期能够为众多难成药靶点提供创新、快速、高效且可靠的临床前候选物解决方案。lg...