全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
美股开盘:纳指涨逾百点 中概股多数走高百度涨逾5%、蔚来涨超4%
go
lg
...
usicGen的开源AI模型,这是一种
深度
学习
语言模型,可以根据文本提示生成音乐。Meta已经在Github上以开源的形式发布了MusicGen的代码和模型,并允许商业使用。 特斯拉有望实现十三连涨!错失英伟达的“木头姐”套现近1亿美元,会不会又卖飞? 方舟投资掌门人Cathie Wood旗下基金(包括方舟创新ETF、方舟自主技术与机器人ETF以及方舟下一代互联网ETF)周一出售了超39.3万股特斯拉股票,以周一的收盘价来算,价值超9800万美元。此前,其大胆预测,到2027年特斯拉会因其自动驾驶技术涨至2000美元。 AMD新品发布前夕,投行大幅上调目标价 美国超微公司将于北京时间6月14日周三凌晨01:00举办“AMD数据中心和AI技术首映”,该现场直播活动将展示其公司的发展战略和不断壮大的数据中心和AI产品组合和能力。周一,多家投行上调AMD目标价,Wedbush将目标价从每股95美元大幅上调至145美元,Keybanc则将目标价从110美元上调至150美元,两家投行还重申了“超配”(Overweight)评级。另外,投行Rosenblatt给出了“买入”评级,并把目标价设定在每股200美元,是所有投行给出的最高的目标价。 甲骨文Q4业绩、Q1营收指引均超预期 甲骨文公司第四财季调整后营收138亿美元,超预期的137.2亿美元;云服务和许可支持营收93.7亿美元,同比增长23%,远超预期的8%。CEO卡兹预计,第一财季EPS在每股1.12美元到1.16美元之间;云计算业务(除甲骨文健康)增速将达到29%;预计营收增速8%到10%,其中值超预期的8%。 嘉年华邮轮开盘有望再刷阶段高价,机构看好行业需求 嘉年华邮轮开盘有望再刷阶段高价。消息上,在美国银行分析师Andrew Didora和摩根大通分析师Matthew Boss均将嘉年华邮轮股票评级上调至“买入”评级。据了解,在新冠疫情之后,邮轮运营商的兴趣正在反弹。上述两位分析师都强调,由于市场对未来可能出现衰退的担忧加剧,消费者注意到他们的可自由支配支出,但尽管如此,市场对邮轮预订需求仍将持续上升。 人工智能爆点来了?全球CRM龙头推出AI云服务,年内股价已涨超六成 全球最大的客户关系管理软件供应商赛富时宣布推出了人工智能云服务,并将其生成式人工智能的风险投资基金增加一倍至5亿美元。年初以来,Salesforce股价已经反弹超60%。 AI取代人工先拿教育行业开刀?美版“作业帮”启动裁员 当地时间周一,美国版“作业帮”Chegg(在SEC文件中表示,将裁掉大约4%的员工,人数约为80人,以更好地执行其人工智能战略。成为首家因AI影响而裁员的教育公司。5月份,Chegg公司首席执行官Dan Rosensweig在财报电话会上表示,ChatGPT影响了公司业绩增长,很快引发了连锁反应,股价一天内暴跌48%,今年,该公司股价已经累跌了57%。 卡塔尔财团已完成对曼联收购 据卡塔尔当地媒体AI-Watan报道,卡塔尔财团已经完成了对曼联的收购,预计很快就会官宣。随后《邮报》报道称卡塔尔财团的报价约为50亿英镑,他希望完全控制曼联,而拉特克利夫财团的报价希望获得大约60%的股权。 瑞银上调携程网目标价至54美元 瑞信发表报告指,携程首季业绩远胜预期,预期第二季业务增长将由强劲的国内旅游趋势所主导。瑞信指出携程当前估值水平不高,基于首季业绩表现,将2023至2025年各年收入预测上调22%、18%及18%,经调整每股盈利预测调升31%、17%及16%,美股目标价由47美元上调至54美元,并维持“跑赢大市”评级。 万国数据H股今日大幅上涨逾8%,机构唱好 港股万国数据今日大幅上涨逾8%,中信证券日前指,行业层面,中短期来看行业复苏仍需时间,后续随着国内经济的逐渐复苏以及云厂商、AI等新业务的拓展,IDC板块有望逐步复苏。供给端,行业整体正处在加速出清阶段,同时一线城市等核心地区的资源依旧具备稀缺性,对于万国数据为代表的头部公司,有望受益竞争格局带来的改善优化。短期经过外部事件的冲击后,公司整体估值处在低位,后续有望在行业需求复苏之后得到修复。
lg
...
金融界
2023-06-13
优思莱斯:人工智能技术推动科技创新和商业进步
go
lg
...
的问卷调查分析系统,能够对问卷数据进行
深度
学习
和分析,帮助企业更好地了解消费者需求。 在医疗健康领域,优思莱斯也在AI技术上进行了深入研究。通过人工智能算法和大数据分析,已经成功开发了一些用于医学诊断的应用程序,例如基于计算机视觉技术的眼科疾病检测、基于生物信号处理的心电图分析等。这些创新性的技术应用将帮助医生更准确地诊断和治疗疾病,同时也有助于提高医疗健康服务的效率和质量。 除了在市场调研和医疗健康领域中发力,优思莱斯还在其他AI应用领域中进行了不断探索和创新。例如,在金融风险控制领域,该公司利用自然语言处理和机器学习技术,对大量的金融数据进行分析和预测,以帮助金融机构更好地掌握市场风险和趋势,并提供相应的决策支持。 优思莱斯通过不断追求AI技术的突破和应用,推动了科技创新和商业进步。优思莱斯的成功,离不开其坚持创新和技术研发的精神。优思莱斯不断投入资金、人力和技术资源,在AI算法、计算机视觉、自然语言处理等多个方向上进行深入研究,并不断推出创新性的产品和解决方案。 另外,优思莱斯还积极与各类企业、院校和科研机构开展产学研合作,共同探索AI技术在实际场景中的应用,促进技术交流和成果转化。优思莱斯已经与多家知名企业建立了长期战略合作伙伴关系,在智慧城市、物联网、智能制造等领域提供AI技术支持和服务。此外,优思莱斯还与多所高校和科研机构建立了联合实验室和技术平台,为年轻人才提供更加广阔的发展空间和创新平台。 通过不断追求创新和技术进步,优思莱斯已经成为了全球人工智能领域的佼佼者之一,并为各行业的数字化转型和智能化升级提供了有力支撑和推动。相信在未来的发展中,优思莱斯将继续发挥其技术和人才优势,推进AI技术的应用和创新,为构建更加智慧、可持续的社会做出积极贡献。 来源:金色财经
lg
...
金色财经
2023-06-13
智能合约智能性的下一步:深入剖析ZKML赛道
go
lg
...
令行工具,用于在zk-SNARK中进行
深度
学习
模型的推理。使用EZKL,您可以在Pytorch或TensorFlow中定义一个计算图,并将其导出为带有JSON文件中一些示例输入的ONNX文件,然后将EZKL指向这些文件以生成zkSNARK电路。通过最新一轮的性能改进,EZKL现在可以在约6秒和1.1GB的RAM内证明一个MNIST大小的模型。迄今为止,EZKL已经得到了一些显着的早期采用,被用作各种黑客马拉松项目的基础设施。 Cathie So的circomlib-ml库包含了用于Circom的各种ML电路模板。电路包括一些最常见的ML函数。由Cathie开发的Keras2circom是一个Python工具,使用底层的circomlib-ml库将Keras模型转换为Circom电路。 LinearA开发了两个用于zkML的框架:Tachikoma和Uchikoma。Tachikoma用于将神经网络转换为仅使用整数的形式并生成计算轨迹。Uchikoma是一个工具,将TVM的中间表示转换为不支持浮点运算的编程语言。LinearA计划支持使用域算术的Circom和使用有符号和无符号整数算术的Solidity。 Daniel Kang的zkml是一个基于他在《Scaling up Trustless DNN Inference with Zero-Knowledge Proofs》论文中的工作构建的ML模型执行证明的框架。在撰写本文时,它能够在约5GB的内存和约16秒的运行时间内证明一个MNIST电路。 在更广义的模型到证明编译器方面,有Nil Foundation和Risc Zero。Nil Foundation的zkLLVM是一个基于LLVM的电路编译器,能够验证用流行编程语言(如C++、Rust和JavaScript/TypeScript等)编写的计算模型。与这里提到的其他模型到证明编译器相比,它是通用的基础设施,但仍适用于复杂的计算,如zkML。当与他们的证明市场结合使用时,这可能尤为强大。 Risc Zero构建了一个通用的zkVM,针对开源的RISC-V指令集,因此支持现有成熟的语言,如C++和Rust,以及LLVM工具链。这允许在主机和客户zkVM代码之间实现无缝集成,类似于Nvidia的CUDA C++工具链,但是使用ZKP引擎代替GPU。与Nil类似,使用Risc Zero可以验证ML模型的计算轨迹。 02广义证明系统 证明系统的改进是使 zkML 取得成果的主要推动力,特别是自定义门和查找表的引入。这主要是由于 ML 对非线性的依赖。简而言之,非线性是通过激活函数(例如 ReLU、sigmoid 和 tanh)引入的,这些激活函数应用于神经网络中线性变换的输出。由于数学运算门的限制,这些非线性在 zk 电路中实现起来具有挑战性。按位分解和查找表可以通过将非线性的可能结果预先计算到查找表中来帮助解决这个问题,有趣的是,这在 zk 中的计算效率更高。 出于这个原因,Plonkish 证明系统往往是 zkML 最受欢迎的后端。Halo2 和 Plonky2 及其表式算术方案可以通过查找参数很好地处理神经网络非线性。此外,前者拥有充满活力的开发人员工具生态系统和灵活性,使其成为包括 EZKL 在内的许多项目的实际后端。 其他证明系统也有其优势。基于R1CS的证明系统包括Groth16,因其小型证明尺寸而闻名,以及Gemini,因其处理极大电路和线性时间验证器而闻名。基于STARK的系统,例如Winterfell证明器/验证器库,尤其在通过Giza的工具将Cairo程序的追踪作为输入,并使用Winterfell生成STARK证明来验证输出的正确性时,非常有用。 03zkML特定的证明系统 在设计能够处理先进的机器学习模型的复杂、电路不友好的操作的高效证明系统方面已经取得了一些进展。基于GKR证明系统的zkCNN和基于组合技术的Zator等系统往往比通用证明系统更具性能,这一点在Modulus Labs的基准测试报告中有所体现。 zkCNN是一种使用零知识证明来证明卷积神经网络正确性的方法。它使用sumcheck协议来证明快速傅里叶变换和卷积,具有线性的证明时间,比渐近计算结果更快。已经引入了几个改进和泛化的交互证明,包括验证卷积层、ReLU激活函数和最大池化。根据Modulus Labs的基准测试报告,zkCNN特别有趣的地方在于它在证明生成速度和RAM消耗方面优于其他通用证明系统。 Zator是一个旨在探索使用递归SNARK来验证深度神经网络的项目。验证更深层次模型的当前限制是将整个计算轨迹适应单个电路中。Zator提出使用递归SNARK逐层进行验证,可以逐步验证N步重复计算。他们使用Nova将N个计算实例减少为一个可以通过单个步骤进行验证的实例。采用这种方法,Zator能够对具有512层的网络进行SNARK,这与大多数当前的生产AI模型一样深。Zator的证明生成和验证时间仍然对于主流应用案例来说过长,但他们的组合技术仍然是非常有趣的。 应用领域 鉴于zkML处于早期阶段,其关注点主要集中在上述基础设施上。然而,目前也有一些项目致力于应用开发。 Modulus Labs是zkML领域中最多样化的项目之一,他们既开展示例应用,也从事相关研究。在应用方面,Modulus Labs通过RockyBot(一个链上交易机器人)和Leela vs. the World(一个人类与经过验证的链上Leela国际象棋引擎对战的棋盘游戏)展示了zkML的用例。该团队还进行了研究,编写了《智能的代价》,对不同模型规模下的各种证明系统的速度和效率进行了基准测试。 Worldcoin正在尝试应用zkML来创建一个保护隐私的人类身份证明协议。Worldcoin使用定制硬件处理高分辨率虹膜扫描,并将其插入到Semaphore实现中。然后可以使用该系统执行诸如成员资格证明和投票等有用操作。他们目前使用受信任的运行时环境和安全的安全区域来验证相机签名的虹膜扫描,但他们最终的目标是使用零知识证明来验证神经网络的正确推理,以提供加密级别的安全保证。 Giza是一种协议,采用完全无信任的方法在链上部署AI模型。它使用包括ONNX格式表示机器学习模型、Giza Transpiler用于将这些模型转换为Cairo程序格式、ONNX Cairo Runtime用于以可验证和确定性的方式执行模型,以及Giza Model智能合约用于在链上部署和执行模型的技术堆栈。尽管Giza也可以归类为模型到证明编译器的类别,但他们作为一个ML模型市场的定位是目前最有趣的应用之一。 Gensyn是一个分布式硬件供应网络,用于训练ML模型。具体而言,他们正在开发一个基于梯度下降的概率审计系统,并使用模型检查点来使分散式GPU网络能够为全尺度模型提供训练服务。尽管他们在这里的zkML应用非常特定于他们的用例——他们希望确保当一个节点下载和训练模型的一部分时,他们对模型更新的诚实性——但它展示了将zk和ML相结合的强大力量。 ZKaptcha 专注于 web3 中的 bot 问题,为智能合约提供验证码服务。他们目前的实施让最终用户通过完成验证码来生成人类工作的证明,验证码由他们的链上验证程序验证,并通过几行代码由智能合约访问。今天,他们主要只依赖于 zk,但他们打算在未来实现 zkML,类似于现有的 web2 验证码服务,分析鼠标移动等行为以确定用户是否是人类。 鉴于 zkML 市场还很早,许多应用程序已经在黑客马拉松级别进行了试验。项目包括 AI Coliseum,一个使用 ZK 证明来验证机器学习输出的链上 AI 竞赛,Hunter z Hunter,一个使用 EZKL 库来验证带有 halo2 电路的图像分类模型输出的照片寻宝游戏,以及 zk Section 9,它 将 AI 图像生成模型转换为用于铸造和验证 AI 艺术的电路。 zkML面临的挑战 尽管在提高和优化方面取得了飞速的进展,但zkML领域仍然面临一些核心挑战。这些挑战涉及技术和实践等方面,包括: 以最小的精度损失进行量化 电路规模,特别是当网络由多个层组成时 矩阵乘法的高效证明 对抗攻击 量化是将浮点数表示为定点数的过程,大多数机器学习模型使用浮点数表示模型参数和激活函数,在处理zk电路的域算术时,需要使用定点数。量化对机器学习模型的准确性的影响取决于所使用的精度级别。一般来说,使用较低的精度(即较少的比特数)可能会导致准确性降低,因为这可能引入舍入和近似误差。然而,有几种技术可用于最小化量化对准确性的影响,例如在量化后对模型进行微调,以及使用量化感知训练等技术。此外,zkSummit 9上的一项黑客马拉松项目Zero Gravity显示出,针对边缘设备开发的替代神经网络架构(例如无权重神经网络)可以用于避免电路中的量化问题。 除了量化之外,硬件是另一个关键挑战。一旦通过电路正确地表示了机器学习模型,由于zk的简洁性,验证其推理的证明将变得廉价且快速。这里的挑战不在于验证者,而在于证明者,因为随着模型规模的增长,RAM消耗和证明生成时间会迅速增加。某些证明系统(例如使用sumcheck协议和分层算术电路的基于GKR的系统)或组合技术(例如将Plonky2与Groth16相结合,Plonky2在证明时间方面效率高但对于大型模型的高效证明大小较差,而Groth16在复杂模型的复杂度上不会导致证明大小增长)更适合处理这些问题,但在zkML项目中管理权衡是一个核心挑战。 在对抗攻击方面,仍然有待努力。首先,如果一个无信任的协议或DAO选择实施一个模型,在训练阶段仍然存在对抗攻击的风险(例如训练模型以在看到特定输入时表现出特定行为,这可能被用来操纵后续的推理)。联邦学习技术和训练阶段的zkML可能是最小化这种攻击面的一种方式。 另一个核心挑战是当模型保护隐私时存在模型盗窃攻击的风险。虽然可以混淆模型的权重,但在给定足够的输入输出对的情况下,从理论上讲,仍然有可能反向推导出权重。这主要是对小规模模型的风险,但仍然存在风险。 智能合约的可扩展 尽管在将这些模型优化为在zk的限制条件下运行时存在一些挑战,但改进工作正在以指数速度进行,一些人预计在进一步的硬件加速下,我们很快就能与更广泛的机器学习领域达到同等水平。为了强调这些改进的速度,zkML从0xPARC在2021年展示了如何在可验证电路中执行小规模MNIST图像分类模型的演示,到Daniel Kang在不到一年后为ImageNet规模的模型做同样的工作的论文。在2022年4月,这个ImageNet规模的模型的准确性从79%提高到92%,并且像GPT-2这样的大型模型在近期内有望成为可能,尽管目前的证明时间较长。 我们认为zkML是一个丰富而不断发展的生态系统,旨在扩展区块链和智能合约的能力,使其更加灵活、适应性强和智能化。 尽管zkML仍处于早期开发阶段,但它已经开始显示出有希望的结果。随着技术的发展和成熟,我们可以期待在链上看到更多创新的zkML用例。 来源:金色财经
lg
...
金色财经
2023-06-13
计算机视觉如何赋能交通场景
go
lg
...
视觉利用图像处理、模式识别、机器学习和
深度
学习
等技术手段,将数字图像或视频转化为有意义的信息。 计算机视觉的主要技术原理为: 图像获取:计算机视觉的首要步骤是获取图像或视频数据。这可以通过摄像头、传感器或卫星图像等设备实现。 图像预处理:图像预处理是为了提高图像质量和减少噪声干扰。它包括图像去噪、增强对比度、图像平滑等操作。 特征提取:特征提取是计算机视觉的关键步骤,它通过识别和提取图像中的关键特征,如边缘、角点、纹理等。常用的特征提取算法包括SIFT、SURF和HOG等。 物体检测和识别:物体检测和识别是计算机视觉中的核心任务。通过训练机器学习模型或
深度
学习网
络,可以实现对图像中物体的自动检测和识别,如人脸识别、车辆检测等。 场景理解和分析:场景理解和分析是对图像或视频进行更深层次的解释和理解。它可以包括对场景的语义分割、目标跟踪、行为识别等。 计算机视觉赋能交通场景 计算机视觉是人工智能的细分领域之一,在交通安全中起到重要的作用: 提升交通安全:人工智能赋能的计算机视觉技术可以实时监测交通场景,识别交通违规行为和危险情况。例如,通过智能监控摄像头,可以及时发现闯红灯、逆行等违法行为,并及时提醒交警部门采取措施。这有助于减少交通事故的发生,提升道路交通的安全性。 优化交通管理:人工智能技术结合计算机视觉,可以实现智能交通信号控制系统。该系统可以根据实时交通状况调整信号灯的时长,以优化道路通行效率。通过减少交通拥堵和优化交通流量,可以提高出行效率,减少车辆排放和燃料消耗。 提供智能驾驶辅助:人工智能与计算机视觉技术为智能驾驶提供了支持。通过激光雷达、摄像头和传感器等设备,智能车辆能够感知周围环境,实时分析道路情况,并做出智能决策。这有助于提高驾驶安全性和减少人为错误。 数据分析与预测:人工智能技术结合计算机视觉,可以对大量交通数据进行分析和预测。通过对交通流量、拥堵状况等数据进行
深度
学习
和模式识别,可以预测未来交通趋势,为交通规划和决策提供科学依据。 计算机视觉场景案例 随着技术的不断成熟和发展,计算机视觉已经在交通场景下得到了大范围的应用,极大的提升了交通管理效率和降低了管理成本。 智能交通监控系统:城市引入智能监控系统,利用计算机视觉技术实时监测道路情况。系统能够自动检测和记录交通违规行为,如超速、压线行驶等,并及时发出警报。根据市场测算,经过一年的运行,城市的交通违规行为率下降了30%,有效提升了交通安全水平。 智能交通信号控制系统:在高密度车流的交叉路口,采用了智能交通信号控制系统。该系统利用计算机视觉技术实时感知交通状况,并根据车流密度智能调整信号灯的时长。经过实施和数据测算,该交叉路口的通行效率提高了20%,车辆排队时间减少了一半小时,缓解了交通拥堵问题。 自动驾驶技术:许多汽车制造商和科技公司致力于开发自动驾驶技术。通过计算机视觉和人工智能算法,车辆能够实时感知和识别道路标志、行人、车辆等,并做出相应的驾驶决策。这项技术为驾驶员提供了更高的安全性和舒适性,减少了交通事故的风险。 实时交通数据分析:通过收集和分析交通摄像头的图像数据,结合人工智能算法进行图像处理和识别,可以实时监测道路上的交通状况。基于这些数据,交通管理部门可以做出相应的调度和决策,优化交通流量,减少拥堵。 结语 人工智能赋能交通场景的计算机视觉技术为交通管理和安全带来了巨大的优势。通过实时监测、智能决策和数据分析,交通系统的效率和安全性得到了显著提升。未来,随着人工智能和计算机视觉的不断发展,我们有理由相信交通场景将变得更加智能化、高效和安全。 来源:金色财经
lg
...
金色财经
2023-06-13
慧博云通:上海慧博与百度文心一言及飞桨的合作尚处于启动阶段
go
lg
...
伙伴的全类合作伙伴,同时还是飞桨(百度
深度
学习
平台)的技术合作伙伴。上海慧博与百度智能云及飞桨合作为多种行业的客户提供人工智能相关的技术服务。截至目前,上海慧博与百度文心一言及飞桨的合作尚处于启动阶段,人工智能业务在公司整体业务中占比不大。 公司是一家致力于为客户提供专业信息技术服务的提供商,主营业务包括软件技术服务、专业技术服务、产品与解决方案三大板块。公司境外客户有SAP、InternetBrands、爱立信、三星等公司,慧博云通目前与英伟达暂无业务合作。 公司多年以来专注云计算领域的业务积累,储备了大量的专业技术、充足的技术人才和各种类型的项目经验,可以为客户在云计算的SaaS(软件即服务)、PaaS(平台即服务)、IaaS(基础设施即服务)等各个技术层面提供多元化的云平台产品技术服务,包括规划、架构、构建、支持等,帮助客户快速构建和实施云计算项目。截至2022年12月31日,公司超过20%以上的业务技术人员具有云计算领域服务经验,已为近50家客户提供云应用的开发、部署和运维等服务,自身拥有的云计算相关软件著作权为36项。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-06-13
6月12日大公司动向追踪:视觉中国宣布推出AI灵感绘图,壳牌CEO修订公司战略
go
lg
...
文字生成图像,是一种人工智能技术,利用
深度
学习
算法,将给定的文字描述转化为对应的图像。 壳牌CEO修订公司战略 看好天然气长期前景 壳牌首席执行官Wael Sawan修订了公司战略,因为公司看到天然气在全球能源结构中的长期作用,并计划在主要增长市场扩张。据知情人士透露,壳牌敦促液化天然气团队在中国和印度开展更多业务,并为在这两个国家和其他目标国家达成的交易提供更高的奖金。知情人士称,壳牌将研究液化天然气出口设施或长期供应协议的投资机会。 6连板上海物贸:未发现需要澄清或回应的媒体报道或市场传闻 上海物贸公告,经公司自查,并向控股股东百联集团书面征询并核实,截至本公告披露日,公司及百联集团均不存在应披露而未披露的重大信息,包括但不限于正在筹划涉及公司的重大资产重组、股份发行、重大交易类事项、业务重组、股份回购、股权激励、破产重整、重大业务合作、引进战略投资者等重大事项。未发现需要澄清或回应的媒体报道或市场传闻。 鸿博股份:控股股东寓泰控股持有部分股份被动减持0.31% 鸿博股份公告称,因收到法院协助执行通知书寓泰控股被动减持数量为1,588,700股,占公司总股本比例为0.31%。
lg
...
金融界
2023-06-12
BSI为WiFi万能钥匙颁发ISO/IEC 27001和ISO/IEC 27701认证证书
go
lg
...
WiFi万能钥匙的安全感知、安全检测、
深度
学习
等人工智能、大数据分析技术的研发运用,为用户产品使用安全、隐私安全提供着全方位保护。 BSI亚太区首席数据治理标准专家潘蓉表示,WiFi万能钥匙用户日活量高,普及面广,在用户的信息及隐私安全保护上需要严格遵守内外部相关的规定,本次通过ISO/IEC 27001及ISO/IEC 27701两项国际标准的审核,证明WiFi万能钥匙现有的管理控制满足标准要求,能够更好的为用户提供安全保障。同时也希望WiFi万能钥匙在后续的持续改进过程中,不断优化提高。 数字信任:BSI全面解决方案 BSI作为全球首家国家标准机构,特别在数字信任领域,始终处于信息安全标准的前沿,具备提供一系列以权威的国际标准为核心的认证和培训服务,赋能组织实现数字信任,打造具备韧性的数字安全体系。过去几年,已经助力大量国内外知名企业在安全体系打造上卓有成效。
lg
...
美通社
2023-06-12
a16z领投AGI算力市场协议Gensyn 4300万美元 一文读懂Gensyn
go
lg
...
。在技术栈上:一些公司甚至创建了自己的
深度
学习
专用硬件,例如谷歌的TPU 集群。这些在
深度
学习
方面的性能优于标准GPU,并且不出售,仅供出租。 知识:许多公开的突破都源于研究人员开发的新的大模型架构,但在底层知识产权和人才方面存在着一场战斗。比如,美国吸引了超过50%的中国AI人才,而利用这些人才开发大模型的大公司正越来越多地降低这项技术的可及性;OpenAI的GPT-3.5或者4名义上可以公开使用,但它位于API后面,只有Microsoft可以访问其源代码。 数据:AGI
深度
学习
模型需要大量数据——包括标记的和未标记的——并且通常随着数据量的增加而改进。GPT-3 接受了 3000 亿个单词的训练。标记数据尤为重要,训练AGI需要的数据集集中在一些大公司手中。比如一个冷知识:每次你解决reCaptcha访问网站时,你都在标记训练数据以改进谷歌地图。 去中心化AGI计算存在的困难 去中心化计算可以创造一个更便宜、更自由的基础来研究和开发人工智能。但去中心化AGI存在着工作验证难题,如何知道第三方已完成你请求的计算? 工作验证难题有两个因素:状态依赖,高计算费用。 状态依赖:神经网络中的每一层都连接到它之前的层中的所有节点。这意味着它需要前一层的状态。更糟的是,每一层的所有权重都由前一个时间步决定。因此,如果你想验证是否有人训练了一个模型——比如,通过在网络中选择一个随机点并查看你是否得到相同的状态——你需要一直训练模型直到那个点,这计算量非常大。 高计算费用: 2020 年 GPT-3 单次训练的成本约为 1200 万美元,比2019 年 GPT-2 训练的估计值约 43,000 美元高出 270 倍以上。一般来说,最好的神经网络的模型复杂度(大小)目前每三个月翻一番。如果神经网络更便宜,和/或如果训练代表更少的模型开发过程,那么可能来自状态依赖的验证开销是可以接受的。 如果想降低
深度
学习
训练的价格并去中心化控制权,需要一个系统来不信任地管理状态相关的验证,同时在开销和奖励那些贡献计算的人方面也很便宜。 Gensyn如何去中心化AGI计算 Gensyn协议将世界上所有的计算联合到一个全球机器学习超级集群中,任何人都可以随时使用。它通过结合两件事来实现以超大规模和低成本无需信任地训练神经网络: 1、创新的验证系统 有效解决任意规模神经网络训练中状态依赖问题的验证系统。该系统将模型训练检查点与终止于链上的概率检查相结合。它以无需信任的方式完成所有这些工作,并且开销与模型大小成线性比例(保持验证成本不变)。 根据Gensyn Litepaper,Gensyn主要通过三个概念解决验证问题:概率proof-of-learning(使用基于梯度的优化过程中的元数据来构建所执行工作的证书并通过某些阶段的复制来快速验证)、基于图的精确定位协议(使用多粒度、基于图的精确定位协议和交叉评估器一致执行,以允许验证工作重新运行并比较一致性,并最终由链本身确认)、Truebit 式激励游戏(使用 staking 和 slashing 来构建一个激励游戏,确保每个财务理性的参与者诚实行事并执行他们的预期任务) 该系统主要由四个主要参与者:提交者、解题者、验证者和吹哨者。提交者:系统最终用户,提供将要计算的任务并为完成的工作单元付费;解题者:系统主要工作部分,执行模型训练并生成证明以供验证者检查;验证者:将非确定性训练过程链接到确定性线性计算、复制解题者证明的一部分并将距离与预期阈值进行比较;吹哨者:最后一道防线,检查验证者的工作并挑战以期获得累积奖金。 2、新的供应 利用未充分利用和未充分利用/未优化的计算设备资源。这些设备包括从目前未使用的游戏GPU到之前以太坊PoW时代的GPU矿机。而且该协议的去中心化意味着它最终将由社区多数管理,未经社区同意不能“关闭”;与web2对应物不同,这使其具有抗审查性。 大规模+低成本:Gensyn 协议提供了与数据中心拥有的GPU相似的成本,其规模可以超过AWS 来源:金色财经
lg
...
金色财经
2023-06-12
财报分析 | AI 赋能的下一代搜索:百度的新增长引擎
go
lg
...
飞桨(PaddlePaddle)是集
深度
学习
核心框架、工具组件和服务平台为一体的技术先进、功能完备的开源
深度
学习
平台,已被国内企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态。提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用。 飞桨作为百度产业级
深度
学习
框架,是直接支撑文心大模型的平台,也是目前被广泛使用的
深度
学习
框架。截至2022年底,飞桨开发者社区已增长到535万人次,并已服务超过20万家企业,位列中国
深度
学习
平台市场综合份额第一。到2022年底,开发者已于飞桨上创建了67万个模型。 百度飞桨平台具备开发便捷、动静结合部署等多重优势,未来有望吸引更多开发者及 企事业单位及科研院所加入,共同推动国内AI大模型的研发和应用。飞桨平台在框架易用性、训练技术、推理引擎和模型库四大方面均具备显著优势,可供开发者快速便捷地进行AI开发。 在百度AI能力的整体架构中,
深度
学习
框架位于第二层,整体的四层能力包括「底层芯片+
深度
学习
框架+大模型+应用层」。 ◎ AI芯片 - 昆仑芯 昆仑芯科技团队于2017年在Hot Chips上发布自研的、面向通用AI计的芯片核心架构——昆仑芯XPU。集十余年AI加速研发实践,昆仑芯XPU从AI落地的实际需求出发,按照复杂前沿的人工智能场景需求开展迭代,致力为开发者提供通用、易用、高性能的算力来源。 昆仑芯科技已成功推出两代通用AI计算处理器产品:昆仑芯1代AI芯片、昆仑芯2代AI芯片,及多款基于自研芯片的AI加速卡:K100、K200、R200系列,以及AI加速器组R480-X8。新一代AI芯片、AI加速卡及更多产品正在研发中。 昆仑芯1代AI芯片基于昆仑芯自研架构XPU设计,针对云端推理场景,支持通用AI算法,在百度搜索引擎、小度等业务中部署,涉及互联网、工业制造、智慧金融、智慧交通等领域。 昆仑芯2代AI芯片基于自研架构昆仑芯XPU-R而设计。相比1代产品,2代AI芯片主要为数据中心高性能计算提供算力,支持自然语言处理、计算机视觉、语音以及传统机器学习等各类人工智能任务。 ◎ 文心一言-文心大模型 受益于百度知识图谱文心大模型成为了全球首个知识增强千亿大模型。文心大模型已历经多次迭代,在更早之前也已经从单一的自然语言理解延伸到多模态,包括视觉、文档、文图、语音等多模态多功能。 百度为推进大模型深入产业落地,与行业头部企业联合研发融合行业数据、知识以及专家经验的行业大模型,目前百度文心大模型已经在电力、金融、媒体等领域,发布了10多个行业大模型。 文心大模型全景图刷新,构建产业大模型体系。大模型的出现,为人工智能进一步发展带来新机遇,
深度
学习
平台加大模型,贯通AI全产业链,夯实产业智能化基座,将进一步加速智能化升级。 文心一言通过自然语言交互的形式,根据用户的指令,完成问答、文本创作、代码查错等任务。其能力和应用场景非常广泛,主要包括以下几个方面: 生成应用和布局:根据用户的需求和偏好,自动生成各种应用和界面布局,比如网页、APP、游戏等。 搜索和数据分析:根据用户的查询,自动搜索和分析相关的数据,并以图表或文本的形式呈现给用户,比如股票、天气、新闻等。 程序生成和分析:根据用户的描述或示例,自动生成或修改相应的代码,并对代码进行检查和优化,比如Python、Java、C++等。 文本生成:根据用户的输入或主题,自动生成各种类型和风格的文本内容,比如小说、诗歌、广告、论文等。 内容创作:根据用户的需求和喜好,自动创作各种类型和形式的内容,比如音乐、视频、图片等。 一般推理:根据用户提供的信息或问题,自动进行逻辑推理和判断,并给出合理的答案或建议,比如数学题、谜语、道德问题等。 其他:可以应用于其他领域和场景,比如教育、娱乐、社交、医疗等。 1.2 移动生态 百度移动生态的核心是百度App,是中国第一的搜索加信息流应用程序,2022年12月拥有6.48亿的MAU及每日登录率超过80%。与大多数移动应用程序不同,百度总计通过其自有的AI支柱,来自第三方应用程序及网站的汇总内容和服务可将流量直接引向封闭生态系统,亦可将流量直接引向具有类似于本地应用程序体验的第三方内容及服务供应商。 根据开放式平台模型,百度总计利用百家号账户,智能小程序及托管页的网络合作伙伴,持续发展其庞大的第三方内容及服务。百度于AI及强大知识图谱开发方面积累的数十年经验使其能够在开放平台上将用户意图与长尾,第三方内容及服务进行匹配。 移动生态中包括数十个应用程序,其中包括百度App、好看视频及百度贴吧,为公众提供通过搜索及信息流发现及消费信息并与内容创作者,发布者,服务提供商及商户交流与互动的平台。从用户获取到用户关系管理再到闭环交易的类似于本地应用程序的体验,向商家展示百度的价值,令他们能够在平台上进行用户生命周期管理,亦使百度总计成为搜索及信息流的领先在线营销服务供应商。 在移动生态业务中,百度为50万名客户提供服务,使其能够利用庞大的用户群。百度主要通过提供全面有效的营销服务来满足客户需求,并从中变现。这部分收入主要来自提供搜索,信息流及其他营销服务,占2020年,2021年及2022年总收入的大部分。 被广泛使用的还有AI技术开发创新营销服务(例如动态广告),为各搜索用户推荐最适合的营销客户产品。百度的营销云亦为营销客户提供创新AI能力,以便用户于非营业时间仍可进行产品咨询,且百度大脑可自动与客户进行对话以促成交易。此外,在百度平台发展的用户活动及用户登录,令公司能够丰富除在线营销外的变现方法,比如百度健康。 1.3 智能驾驶 百度智能驾驶与其他增长计划包括有发展前景及巨大市场机遇的业务,部分业务处于商业化初期,客户群不断增长。百度作为智能驾驶及智能设备领域的市场领导者,正凭借其独特的AI能力,数据洞察力及内部研发芯片寻求快速增长机会。 萝卜快跑提供共享无人车服务,萝卜快跑在国内大陆向十个以上城市的公众开放。2022年,萝卜快跑供应的无人驾驶出行服务订单超过1.5百万单。到2023年1月底,萝卜快跑累计向大众提供的无人驾驶出行服务订单超过2百万单。自2021年11月25日起,萝卜快跑已开始在北京的开放道路上开始收费运营,于2022年7月20日,萝卜快跑获得了在开放道路上就提供无人车服务(方向盘后面无安全人员)收费的许可。2022年12月30日,萝卜快跑首批获准在北京开展全无人自动驾驶测试,令百度在首都的公共道路上向公众提供无人车服务更近一步。 百度在自动驾驶领域强劲的品牌及市场领导力已延伸至智能驾驶领域。阿波罗是汽车制造商公认的品牌。公司已经搭建与许多国内外个汽车品牌的合作,采用百度阿波罗汽车解决方案为其乘用车赋能。根据IDC、Strategy Analytics和Canalys,小度于2022年前9个月在全球智能屏出货量及中国智能音箱出货量中排名第一。由百度自主研发的AI芯片是针对百度大脑和特定AI用途定制的,以改善性能与降低成本,而百度也相信相关计划将增强收入长期增长动力。 02 业绩概览 2022财年,百度核心业务营收为954亿元人民币,与2021年基本持平。其中,在线营销业务营收为695亿元人民币,同比下降5.95%。 非在线营销收入方面,2022年的整体营收为259亿元人民币,同比增长22%,主要由云计算和其它基于AI驱动的业务推动。 • 百度2022年Q4营收331亿,与2021年同期持平 • 从2021-2022年各季度数据来看,百度2022年第四季度营收为331亿元,基本与2021年同期持平,较第三季度的325.4亿元增长2%。 其中,2022年第四季度来自百度核心的收入为257亿元,来自爱奇艺的收入为76亿元。 • 百度2022年Q4成本与费用284.84亿,同比降8% • 百度2022年第四季成本与费用为284.84亿元,较上年同期的311亿元降8%。 其中,百度2022年第四季度成本为169亿元,较上年同期下降2%;销售、管理费用为59亿元,较上年同期下降9%;研发费用为57亿元。公司销售及管理费用、研发费用、财务费用占营业收入比重分别为16.6%、18.9%、-1.5%,研发费用率较2021年同期保持稳定,销售及管理费用率有所下降。 • 百度Q4运营利润46亿,运营利润率16% • 百度2022年第四季度运营利润为46亿元,其中,百度核心的运营利润为38亿元,运营利润率为16%;百度2022年第四季度Non-GAAP下运营利润为65亿元,Non-GAAP下百度核心的运营利润为55亿元,实现了同比增长。 百度2022年第四季度其他收益为18亿元,其中有一项长期收益,达16亿元。 • 百度Q4净利50亿,较上年同期大幅改善 • 同样从2021-2022年各季度数据来看,百度2022年第四季度归属于公司的净利润为50亿元,较上年同期大幅改善;百度2022年第四季度Non-GAAP下归属于公司的净利为54亿元。 百度2022年第四季Adjusted EBITDA为82亿,adjusted EBITDA率为25%;其中,百度核心Adjusted EBITDA为71亿,adjusted EBITDA率为28%。 截至2022年12月31日,百度持有现金、现金等价物、受限制现金、短期投资为1853亿元。 2.1 利润增加的主要原因是降本增效与精简运营 2022财年百度公司收入成本为639亿元,同比上一财年同期的643亿元,该项成本下降1%。销售、一般与行政成本2022财年为205亿元,同比下降17%,财报称该项下降是由于渠道支出、促销营销和人员相关费用的减少。 财报显示,得益于持续的降本增效、精简运营,2022年下半年,百度核心经营利润(非美国通用会计准则)同比增长14%;在国内公共卫生防控冲击宏观经济的第四季度,百度经营利润、经营利润率也均实现同比增长。 2.2 基本盘广告业务收入有所下滑,搜索市场份额依旧遥遥领先 财报中显示,搜索引擎广告的在线营销收入有波动,在四个季度中,分别占总营收的55.3%、57.7%、57.5%、56.2%;核心业务中移动生态依然贡献了大部分营收。2022年,百度核心营收为954亿元人民币。其中,在线广告营销收入为695亿元人民币,同比下降6%。 由于公共卫生防控反复影响了线下经济活动,广告主削减预算,百度来自广告的收入减少。财报中显示,活跃在线营销客户数由2021年的约53.5万名减至2022年的约52万名,而每名客户平均收入由2021年的约人民币13.8万元减至2022年的约人民币13.4万元。根据《2022年中国互联网广告数据报告》,2022年,中国互联网广告市场规模预计约为5088亿元,较2021年下降6.38%。 随着2022年12月公共卫生防控政策放开后,移动业务的增长让百度广告业务有了回春的迹象。李彦宏的内部信提及,2022年12 月,百度App月活用户数达到6.48亿,同比增长4%。财报数据显示,百度托管页(Managed Page)的收入占广告收入的48%,同比增长了约40%。 2022年,百度在搜索市场的份额依然遥遥领先,且APP月活跃用户指标保持了正增长。根据statcounter统计数据,百度去年仍以超过85%的超高份额位居中国移动搜索市场份额位居榜首。而截至年末,百度APP月活跃用户达到6.48亿,同比增长4%。 「百度在新发布的2023年一季度财报中披露,百度智能云首次实现了盈利」 百度智能云在2023年一季度实现了盈利(non-GAAP),收入同比增长8%至42亿元。与此同时,百度智能云持续为关键客户构建标准化、规模化的人工智能解决方案,推动了智能云利润的增长。 2.3 非在线营销收入整体营收增长迅速,主要由智能云、AI业务推动 2022年,百度核心营收中,非在线营销收入259亿元,同比增长22%,占该年度总营收的21%。代表着智能云及其他AI业务的非在线营销收入呈总体上升趋势,在四个季度中,分别占总营收的20.07%、20.6%、20%、23%。 同时财报显示,2022年百度核心研发费用达到214.16亿元,占百度核心收入的22.4%。其中Al业务是重中之重。 一方面,作为百度AI to B业务的承载者,百度智能云通过对行业特定痛点的理解,提供深入核心场景的标准化AI解决方案,实现了市场份额的领先。“云智一体” 战略体现出更强竞年力百度智能云已连续四年AI公有云市场第一,2022年上半年在Al公有云服务市场份额占比28.1%。 另一方面,百度自动驾驶业务稳步推进。自动驾驶开放平台Apollo正式推出全新升级版本8.0;自动驾驶出行服务平台萝卜快跑订单量同比大增162%,截至2023年1月底,萝卜快跑累计订单量超过200万单,稳居全球最大的自动驾驶出行服务提供商。 2.4 百度在卸下包袱,而文心一言则是国内最有可能复刻ChaGPT的产品之一 2022年百度核心研发费用达214.16亿元,占比百度核心收入比例的22.4%,已官宣加入百度文心一言生态圈的企业达400+家,AI已成为百度大厦中愈发重要的一块基石,真金白银的持续投入,也正在转化为产业化成果。 文心在大模型已进入ERNIE 3.0系列、跨模态系列等底座模型日渐成熟,模型层基础扎实。2022年11月底,飞桨平台上己凝聚535万开发者、创建67万个Al模型,服务20万家企事业单位,在AI内容生态上都为文心一言提供了多元的使用场景。 对于百度来说,文心一言发布后,能够直接应用于自身产品的使用中,提升产品力。百度的搜索业务、智能驾驶业务都将受到加持,百度智能云也接入文心一言,提升B端服务能力。除此之外智能语音、数字人等都将通过文心言获得新的可能。 03 AIGC角度市场分析 3.1 大模型成为AI领域基础设施 自2022年Stable Diffusion模型的进步推动AIGC的快速发展后,年底,ChatGPT以“破圈者”的姿态,快速“吸粉”亿万,在全球范围内掀起了一股AI浪潮,也促使了众多海外巨头竞相发布属于自己的大模型。 而在国内,百度、阿里、华为、腾讯等公司也已在浪潮赶来之前就有所布局: 2019年,阿里开始布局大模型研发,去年9月发布“通义”大模型系列的众多大模型;华为在2021年基于昇腾AI与鹏城实验室联合发布了鹏程盘古大模型,是首个全开源2000亿参数中文预训练语言模型,在知识问答、知识检索、知识推理、阅读理解等文本生成领域表现突出;而腾讯的思路也与阿里相似,发布了混元AI大模型;第二梯队的京东、网易、360、字节跳动等企业,也纷纷官宣了自己在AI大模型方面的布局。此外,北京智源人工智能研究院推出1.75万亿参数的悟道2.0,可以同时处理中英文和图片数据。浪潮信息和中科院也分别推出了相应的大模型等。 其中,百度是国内最早推出大模型的大厂。 2023年3月,基于该高性能集群,百度推出大语言模型文心一言,并不断迭代出新的能力。随着文心一言的发布,成为了中国第一个类ChatGPT产品后,各家的大模型也纷纷亮相,一时间,国内仿佛陷入了“大模型之战”中。 目前,国内各大企业AI大模型系列主要的NLP语言大模型、CV大模型、多模态大模型已陆续推出并实现部分应用落地。百度文心大模型、华为盘古大模型、商汤大模型、阿里大模型都已陆续亮相。 • 百度与阿里对比 • 百度文心大模型:包含NLP大模型、CV大模型、跨模态大模型、生物计算大模型、行业大模型等。与Bing类似,文心一言有望优化C端用户搜索、创作体验;ToB方面,百度已开放大模型API接口,在文案、AI作画、开放域对话方面赋能企业。对于具体行业,百度推出文心行业大模型,以“行业知识增强”为核心特色。 阿里巴巴通义大模型:由通义-M6模型融合语言模型和视觉模型组成,率先应用在硬件终端天猫精灵和软件通义千问。通义大模型包括统一底座“M6-OFA”,三大通用模型“通义-M6”“通义-AliceMind”“通义-视觉大模型”,以及行业层面的不同垂直领域专业模型。在应用上,天猫精灵基于通义大模型推出拟声助手“鸟鸟分鸟”;对话式通义千问已经开始内测。 作为国内大模型训练规模最大的两家巨头,百度的文心大模型与阿里的通义千问形成对标,基于当前的发展也积累出了一些对比: C端功能势均力敌,B端服务能力阿里更具优势 首先,在面对用户提出的问题时,通义千问与文心一言在绝大多数情况都可以给出较为正确的回答,在面对C端用户的提问时,两个产品显示出了不相上下的实力。而在C端的势均力敌之下,阿里却祭出了同类竞品难以比拟的B端服务能力。 通义千问在C端用户之外,专门针对企业用户发出了邀请共测,企业可基于通义千问打造专属大模型,在企业专属的大模型空间中,既可以调动通义千问的全部能力,也可以结合企业自己的行业知识和应用场景,训练自己的企业大模型。 具体而言,除了通用场景之外,企业由于业务特性的不同,对于大模型服务有特殊需求和要求,通义大模型如果变成企业专属的大模型,可以支撑企业各式各样的应用与服务。 阿里云希望通过产品化的方式,满足企业专属大模型从生成到部署全生命周期的需求。 百度文心一言的核心优势是对中文的理解 对比来看,百度的优势体现在文心大模型在国内市场格局中较为领先。根据IDC发布《2022中国大模型发展白皮书》,百度文心大模型在市场格局中在产品能力、生态能力、应用能力等方面在国内较为领先。 文心一言核心优势是对中文的理解。百度作为中国语境的搜索龙头,拥有有更多的中文语料数据参与训练。比如,文心一言可以针对“洛阳纸贵”这种容易产生歧义的成语,给出较为贴切的解释。可以用成语写出藏头诗,用四川话读出文 章。 总的来说,两个模型在自然语言处理领域都有其独特的优势和不足,难以直接进行比较。但是,可以肯定的是,它们的出现和发展表明了中国在自然语言处理领域的实力和创新能力。 3.2 大模型背后的算力之争 人工智能的基础层是数据和算力,数据由服务器和光模块存储和运输;算力由CPU、GPU、FPGA、ASIC等芯片支撑。 根据前瞻产业研究院的数据,未来几年内,中国人工智能芯片市场规模将保持年均40%至50%的增长速度,到2024年,市场规模将达到785亿元。 数字经济时代,算力无处不在。以芯片、服务器、云计算提供商为主的市场主体,共同构成算力产业的大图景。 中国算力产业正在进入新一轮发展周期,有两个变量将影响中国企业的全球竞争力。第一个变量是2022年全面启动的“东数西算”政策,目的是让算力像水电一样便宜简单易用,同时希望中国企业在国际产业链占据主动权。第二个变量是AI让智能算力需求爆发,智能计算正在重塑云、软件、芯片产业,还在影响其他产业的智能化转型。 中国拥有算力资源的两大主力军分别是国资背景的三大电信运营商(中国移动、中国电信、中国联通)、民营背景的几大科技公司(阿里、腾讯、华为、百度),两大主力军背后,是一条包括设备服务商、芯片供应商、芯片制造商的庞大算力产业链。如果力量分散且失衡,中国算力产业会在关键时刻被拉开差距。 ◎ AI模型数据规模增长,AI算力需求井喷 当前算力距离AI应用存巨大鸿沟。根据Open AI数据,模型计算量增长速度远超人工智能硬件算力增长速度,存在万倍差距。英特尔表示,目前的计算、存储和网络基础设施远不足以实现元宇宙愿景,而要想实现真正的元宇宙,目前的计算能力需量要再提高1000倍。 ◎ AI芯片作为算力的核心,规模保持高速增长 AI芯片为算力的核心,专门用于处理AI应用中大量计算任务的模块。根据艾瑞咨询,2022年中国人工智能芯片市场规模达到396亿元,预计2027年市场规模将达到2164亿元,CAGR为40.5%。国内AI智算中心等数字化基础设施不断完善,AI模型复杂度和参数量的快速提升,对计算能力要求不断提高,高性能人工智能芯片市场将保持高速增长。 3.3 AI应用场景日渐丰富,产业链成长空间广阔 大模型借助“预训练+精调”等模式,用相比较大模型更少量的数据即可对下游应用赋能。预训练大模型基于海量数据的完成了“通识”教育。在具体应用场景下,借助“预训练+精调”等模式,应用模型用相比较大模型更少量的数据即可进行相应微调,高水平完成细分应用的任务。 企业由此借助AIGC技术提高生产效率,降低生产成本,利好下游垂类应用企业,目前AI应用领域:家居、金融、医疗、安防、交通、零售等; 伴随着ChatGPT的出现,带来的文本生成、代码生成、图像生成等能力将有效赋能至下游,减少人工成本,提高办公效率,有效助力企业降本增效;目前国内大厂加快多模态大模型的研发落地,并与众多企业合作,下游应用场景将不断拓展,未来人工智能具备广阔的市场空间。 04 未来发展展望 • 优异成绩令市场瞩目,各大机构纷纷上调了业绩预测 • 高盛、大摩、摩根大通、美银、瑞银、法巴银行等大型国际机构都给出了“买入”评级。各大机构观点表示,百度广告业务将随着经济复苏而回暖改善,2023年下半年或实现增速转正;智能云业务将继续领跑行业、保持高于行业的增速;智能驾驶则将成为长期业绩的积极推动因素,推动股价向上。 在本次财报中,百度董事会还授权了一份总值50亿美元的股票回购计划,有效期持续至2025年12月31日。2023年至今,百度股价已飙升近40%。 • 文心一言的发布至关重要,与百度智能云、搜索服务的结合将会给国内AIGC带来新的可能 • 目前,百度的主营业务仍是搜索,但AI正在为百度的营收提供有力支撑。 随着未来“文心一言”与现有业务实现有机结合,百度将迎来巨大红利期。生成式AI产品不仅能在短时间内带来DAU和用户使用时长的爆发,长期来看还将促进搜索的代际变革,丰富内容生态和供给,优化搜索体验,创造下一代流量入口。 云业务的发展趋势将是更加智能化,仅非带宽和算力的简单提升。文心大模型或颠覆云服务市场的现状,而生成式AI技术将为百度智能云业务打开新的成长和想象空间。另外,大模型技术未来与自动驾驶的结合还将进一步提升自动驾驶的安全性和可靠性,搭载到Apollo智驾平台则可以优化新一代人车语音交互体验。 百度非常重视生成式AI的机会,认为通过整合文心一言、百度App,特别是百度搜索,将增强用户体验。文心一言提供的新功能将有助于吸引新用户并提高用户参与度,同时也会提高广告商对百度的兴趣,推动长期收入增长。 • 百度在全球AI领域的布局具备前瞻性,新的增长值得期待 • 百度在全球大厂中率先发布对标ChatGPT的大模型产品文心一言,具备在全球AI领域布局的前瞻性。并且,文心一言内测一个多月,就完成了4次大的技术升级,大模型推理性能提升近10倍。 百度创始人、董事长兼首席执行官李彦宏在5月4日百度内部活动中表示,百度之所以能够在Google、Meta、Amazon等大厂之前率先发布生成式大模型产品,是因为百度在芯片、框架、模型、应用等四个层面做到全栈布局、层层领先。 李彦宏:未来文心一言将通过百度智能云对外提供服务,这将是百度“云智一体”战略的里程碑,也意味着云市场游戏规则的根本性改变。云服务从数宇时代跃迁至智能时代,之前选择云厂商更多看算力、存储等基础云服务,未来,更多会看框架好不好、模型好不好,以及模型、框架、芯片、应用之间的协同。 目前,已经有包括互联网、媒体、金融、保险、汽车、企业软件等行业的400多家头部企业宣布加入百度“文心一言”生态。随着文心一言等通用AI产品的技术迭代和成本降低,未来百度智能云将突破更多核心场景。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-06-12
MBK公链:下一代区块链技术的引领者
go
lg
...
的分布式账本技术,它通过引入广泛应用的
深度
学习
和人工智能技术,打破了区块链技术的一些困境,从而成为下一代区块链技术的引领者。 由于其强大的技术实力和颠覆性的创新设计,MBK公链在区块链行业中迅速崭露头角,并被认为将会给人们带来一场彻底的区块链变革。 一、MBK公链技术简介 MBK公链采用了一种新型的混合共识机制,以及可扩展性和故障恢复能力为首要目标的设计。 在共识机制方面,MBK公链是一种混合共识机制,它将“工作量证明”和“权益证明”结合起来,从而达到了更加可靠的共识结果。 在可扩展性和故障恢复方面,MBK公链采用了动态分片的技术,使得交易处理速度得到了大幅提高;同时,它还引入了智能合约设计,从根本上解决了合约嵌套的问题。 总之,MBK公链是基于全新的分布式计算架构和人工智能技术而设计开发的,它可以支持多终端多浏览器进行操作,同时还能够提供高效、稳定的数据存储和传输服务。 二、MBK公链的优势 MBK公链在以下几个方面都有着非常大的优势: 1. 可扩展性高 MBK公链采用了动态分片的技术,使得交易处理速度得到了大幅提高,同时也大幅度的提高了系统的可扩展性。 2. 高效稳定 MBK公链采用了新型的混合共识机制,相比其他公链,MBK公链具有更加高效、稳定的特性。 3. 安全性高 MBK公链最大的突破之一便是其引入了广泛应用的
深度
学习
和人工智能技术,这样使得其成为了一个兼备大规模交易处理和数据保密隐私的公链。 4. 支持智能合约设计 MBK公链提供了智能合约的设计,从根本上解决了合约嵌套的问题,极大地提高了工作效率,同时还具备高效的审核和协议层。 三、MBK公链的应用场景 MBK公链的应用场景非常广泛,这里就简单介绍一下其中几个: 1. 数字货币交易 由于MBK公链具有高效、稳定的特性,因此它在数字货币交易领域的应用非常广泛。另外 MBK公链 对智能合约的支持也使其对数字货币的管理非常方便,让普通用户也能够方便、安心的进行数字货币持久和贸易交换。 2. 数据资产管理 MBK公链具备高效、安全的数据存储和传输能力,因此在数据资产管理领域也有着很大的应用空间。 3. 物联网领域 由于MBK公链可以支持多终端多浏览器进行操作,使得其在物联网领域也有一个巨大的应用场景,可以方便、高效的进行数据的存储和传输。 四、MBK公链的前景 随着MBK公链在技术上不断的突破尝试和实现,它的前景也在不断被看好。MBK公链采用了混合共识机制和灵活的分片技术,相比其他公链,MBK公链具有更加高效、稳定的特性。 同时,由于MBK公链兼备大规模交易处理和数据保密隐私的公链托管机制,使得其在越来越多的区块链应用中发挥着重要的作用,使得其未来美好前景具有很大的发展前途。 总结 作为下一代区块链技术的引领者,MBK公链具备了许多优秀的特性和优势。它采用了混合共识机制和动态分片技术,在可扩展性和故障恢复方面有着很大的优越性;它还兼具大规模交易处理和数据保密隐私的公链托管机制,使得其在未来的发展中也有着广泛的应用前景。 由此可见,MBK公链有望成为下一个会引领区块链技术潮流的公司,它将为区块链技术带来全新的变革和发展。 来源:金色财经
lg
...
金色财经
2023-06-12
上一页
1
•••
89
90
91
92
93
•••
127
下一页
24小时热点
中美突发重磅!美副总统:特朗普正“考虑”对中国产品征收新关税
lg
...
中国突传重磅消息!华尔街日报独家:中国拘留下任外长热门人选 曾协助美中关系
lg
...
中国向美国释放一个重大信号!北京宁愿牺牲部分产能,也要少买……
lg
...
黄金短线突然一波急跌!金价重挫逾15美元 FXStreet分析师金价技术分析
lg
...
中美重大突发!英国金融时报:中国希望美国放宽AI芯片出口管制以达成贸易协议
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#链上风云#
lg
...
111讨论
#VIP会员尊享#
lg
...
1989讨论
#CES 2025国际消费电子展#
lg
...
21讨论