则⁴: 1)地址之间曾有 eth 或者稳定币的转移;2)两个地址之间必须互相转过账,次数为:一个方向>= 3 笔,另一个方向>= 1 笔;3)只限制在地址之间 2023 年的交易。 利用算法按照上述准则进行地址聚类,得到不同的地址群,并用 s 1 _ind 和 s 2 _ind 对地址是否在时间段 A 和时间段 B 参与过 NFT 交易进行标识⁵。其中,若地址群中至少包含一个 s 1 _ind= 1 的地址,则该地址群为旧实体;若地址群中地址 s 1 _ind 均为 0 ,则该地址群为新实体。 [ 4 ] 我们的算法可以识别钱包之间直接或间接的关联。「直接」是指两个 NFT 玩家之间的交互满足标准。 而当多个 NFT 玩家曾与同一地址(无论该地址在不在分析范围)进行交互并且交互满足上述标准时,这些 NFT 玩家之间就会形成「间接」链接。 [ 5 ] s 1 _ind= 1 且 s 2 _ind= 1 说明该地址在两个时间段都参与了 NFT 交易;s 1 _ind= 1 且 s 2 _ind= 0 说明该地址仅在时间段 A 参与了 NFT 交易;s 1 _ind= 0 且 s 2 _ind= 1 说明该地址仅在时间段 B 参与了 NFT 交易。 研究结果与分析 1. 数据结果⁶(buy volume 为「交易量」,capital 为「资金量」;Season 1 对应时间段 A,Season 2 对应时间段 B) 1.1)两个时间段分别的交易量和资金量: 时间段 A 和时间段 B 的交易量和资金量 1.2)新旧地址⁷在时间段 B 的交易量和资金量(左边以 ETH 为单位;右边为占比 %): 新旧地址在时间段 B 的交易量和资金量 1.3)新旧实体⁸在时间段 B 的交易量和资金量(左边以 ETH 为单位;右边为占比 %): 新旧实体在时间段 B 的交易量和资金量 [ 6 ]「在时间段 B 的交易量和资金量」分别输出地址和实体角度的数据是为了弥补地址聚类可能存在的缺陷(如将一些新实体的地址错误归到旧实体中,导致旧实体的交易和资金量虚大),从而获得数据的基准。 [ 7 ] s 1 _ind= 1 则为旧地址,s 1 _ind= 0 则为新地址。 [ 8 ] on_ind=old 则为旧实体,on_ind=new 则为新实体。 2. 结果分析 2.1) NFT 场内资金的增长情况 时间段 B 的总交易量和资金量均大于时间段 A 的,交易量和资金量增量绝对值分别为 906, 857 E 和 661, 159 E。交易量和资金量均呈现上升趋势,表明 NFT 市场总体呈增长态势。 2.2)新增资金的来源 资金量的增量小于新实体在时间段 B 的资金量(661, 159 E vs 851, 181 E),因此新增资金量主要来源于新实体,而至少部分旧实体投入 NFT 市场的资金量在萎缩。 2.3)新旧实体的交易量和资金量的占比情况 综合地址和实体角度在时间段 B 的交易量和资金量数据,旧实体交易量和资金量的占比大致位于 55% -70% 。 旧实体在时间段 B 的交易量和资金量占比均超五成,表明旧实体是 NFT 市场活跃度的主要贡献者; 但同时应当注意到,新旧实体在占比方面并未相差悬殊,因此我们认为新实体对于 NFT 市场的贡献力量不容忽视。 结论 通过研究 NFT 市场新旧实体的交易量和投入资金占比(旧实体占比在六成左右),以及交易和资金增量的来源(主要来自新实体),我们认为,旧玩家(旧实体)是 NFT 市场活跃度的主要贡献者,而场外的新进入者(新实体)是 NFT 市场新增动能的来源。 需要注意的是,资金增量以及新玩家进场并不完全意味着 NFT 市场在蓬勃生长。这是由于大部分增量都聚集于 Blur 上,极大可能是被代币奖励而不是 NFT 本身的价值吸引而来。至于如何在空投过后维持 NFT 市场长期的繁荣,仍然是市场共同面临的一大挑战。 来源:金色财经lg...