全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
生于边缘:去中心化算力网络如何赋能Crypto与AI?
go
lg
...
e learning的黑箱打开,从而让
AI
model
更加trustless等等。这些愿景若要实现还有很长一段路要走。但其中Vitalik提到的其中一个用例——利用crypto的经济激励来赋能AI,也是一个重要且在短时间内可以实现的一个方向。去中心化算力网络便是现阶段AI + crypto最合适的场景之一。 2 去中心化算力网络 目前,已经有不少项目在去中心化算力网络的赛道上发展。这些项目的底层逻辑是相似的,可以概括为: 利用token激励算力持有者参与网络提供算力服务,这些零散的算力资源可以汇集成有一定规模的去中心化算力网络。这样既能提高闲置算力的利用率,又能以更低的成本满足客户的算力需求,实现买方卖方双方的共赢。 为了使读者在短时间内获得对此赛道的整体把握,本文将从微观—宏观两个视角对具体的项目和整个赛道进行解构,旨在为读者提供分析视角去理解每个项目的核心竞争优势以及去中心化算力赛道整体的发展情况。笔者将介绍并分析五个项目: Aethir、io.net、Render Network、Akash Network、Gensyn,并对项目情况和赛道发展进行总结和评价。 从分析框架而言,如果聚焦于一个具体的去中心化算力网络,我们可以将其拆解成四个核心的构成部分: 硬件网络:将分散的算力资源整合在一起,通过分布在全球各地的节点来实现算力资源的共享和负载均衡,是去中心化算力网络的基础层。 双边市场:通过合理的定价机制和发现机制将算力提供者与需求者进行匹配,提供安全的交易平台,确保供需双方的交易透明、公平和可信。 共识机制:用于确保网络内节点正确运行并完成工作。共识机制主要用于监测两个层面:1)监测节点是否在线运行,处于可以随时接受任务的活跃状态;2)节点工作证明:该节点接到任务后有效正确地完成了任务,算力没有被用于其他目的而占用了进程和线程。 代币激励:代币模型用于激励更多的参与方提供/使用服务,并且用token捕获这种网络效应,实现社区收益共享。 如果鸟瞰整个去中心化算力赛道,Blockworks Research的研报提供了一个很好的分析框架,我们可以将此赛道的项目position分为三个不同的layer。 Bare metal layer: 构成去中心化计算栈的基础层,主要的任务是收集原始算力资源并且让它们能够被API调用。 Orchestration layer: 构成去中心化计算栈的中间层,主要的任务是协调和抽象,负责算力的调度、扩展、操作、负载均衡和容错等。主要作用是“抽象”底层硬件管理的复杂性,为终端用户提供一个更加高级的用户界面,服务特定的客群。 Aggregation layer: 构成去中心化计算栈的顶层,主要的任务是整合,负责提供一个统一的界面让用户可以在一处实现多种计算任务,比如AI训练、渲染、zkML等等。相当于多个去中心化计算服务的编排和分发层。 图片来源:Youbi Capital 根据以上两个分析框架,我们将对选取的五个项目做一个横向的对比,并从四个层面——核心业务、市场定位、硬件设施和财务表现对其进行评价。 2.1 核心业务 从底层逻辑来讲,去中心化算力网络是高度同质化的,即利用token激励闲置算力持有者提供算力服务。围绕这个底层逻辑,我们可以从三个方面的差异来理解项目核心业务的不同: 闲置算力的来源: 市面上闲置算力有两种主要的来源:1)data centers, 矿商等企业手里闲置算力;2)散户手里的闲置算力。数据中心的算力通常是专业级别的硬件,而散户通常会购买消费级别的芯片。 Aethir、Akash Network和Gensyn的算力主要是从企业收集的。从企业收集算力的好处在于:1)企业和数据中心通常拥有更高质量的硬件和专业维护团队,算力资源的性能和可靠性更高;2)企业和数据中心的算力资源往往更同质化,并且集中的管理和监控使得资源的调度和维护更加高效。但相应的,这种方式对于项目方的要求较高,需要项目方有与掌握算力的企业有商业联系。同时,可扩展性和去中心化程度会受到一定程度的影响。 Render Network和io.net主要是激励散户提供手中的闲置算力。从散户手中收集算力的好处在于:1)散户的闲置算力显性成本较低,能提供更加经济的算力资源;2)网络的可扩展性和去中心化程度更高,增强了系统的弹性和稳健性。而缺点在于,散户资源分布广泛且不统一,管理和调度变得复杂,增加了运维难度。并且依靠散户算力去形成初步的网络效应会更加困难(更难kickstart)。最后,散户的设备可能存在更多的安全隐患,会带来数据泄露和算力被滥用的风险。 算力消费者 从算力消费者来讲,Aethir、io.net、Gensyn的目标客户主要是企业。对于B端客户来说,AI和游戏实时渲染需要高性能计算需求。这类工作负载对算力资源的要求极高,通常需要高端 GPU 或专业级硬件。此外,B端客户对算力资源的稳定性和可靠性要求很高,因此必须提供高质量的服务级别协议,确保项目正常运行并提供及时的技术支持。同时,B端客户的迁移成本很高,如果去中心化网络没有成熟的SDK能够让项目方快速deploy(比如Akash Network需要用户自己基于远程端口进行开发),那么很难让客户进行迁移。如果不是及其显著的价格优势,客户迁移的意愿是非常低的。 Render Network和Akash Network主要为散户提供算力服务。为C端用户提供服务,项目需要设计简单易用的界面和工具,为消费者提供良好的消费体验。并且消费者对于对价格很敏感,因此项目需要提供有竞争力的定价。 硬件类型 常见的计算硬件资源包括CPU、FPGA、GPU、ASIC和SoC等。这些硬件在设计目标、性能特性和应用领域上有显著区别。总结来说,CPU更擅长通用计算任务,FPGA的优势在于高并行处理和可编程性,GPU在并行计算中表现出色,ASIC在特定任务中效率最高,而SoC则集成多种功能于一体,适用于高度集成的应用。选择哪种硬件取决于具体应用的需求、性能要求和成本考虑。我们讨论的去中心化算力项目多为收集GPU算力,这是由项目业务类型和GPU的特点决定的。因为GPU在AI训练、并行计算、多媒体渲染等方面有着独特优势。 虽然这些项目大多涉及到GPU的集成,但是不同的应用对硬件规格的要求不同,因此这些硬件有异质化的优化核心和参数。这些参数包括parallelism/serial dependencies,内存,延迟等等。例如渲染工作负载实际上更适合于消费级 GPU,而不适合性能更强的data center GPU,因为渲染对于光线追踪等要求高,消费级芯片如4090s等强化了RT cores,专门为光线追踪任务做了计算类优化。AI training和inference则需要专业级别的GPU。因此Render Network 可从散户那里汇集 RTX 3090s 和 4090s等消费级GPU,而IO.NET需要更多的H100s、 A100s等专业级别GPU,以满足AI初创公司的需求。 2.2 市场定位 对于项目的定位来讲,bare metal layer、orchestration layer和aggregation layer需要解决的核心问题、优化重点和价值捕获的能力不同。 Bare metal layer 关注的是物理资源的收集和利用,Orchestration layer 关注算力的调度和优化,将物理硬件按照客户群体的需求进行最佳优化设计。Aggregation layer是general purpose的,关注不同资源的整合和抽象。从价值链来讲,各个项目应该从bare metal层起,努力向上进行攀升。 从价值捕获的角度来讲,从bare metal layer、orchestration layer 到aggregation layer,价值捕获的能力是逐层递增的。Aggregation layer能够捕获最多的价值,原因在于aggregation platform能够获得最大的网络效应,还能直接触及最多的用户,相当于去中心化网络的流量入口,从而在整个算力资源管理栈中占据最高的价值捕获位置。 相应的,想要构建一个aggregation platform的难度也是最大的,项目需要综合解决技术复杂性、异构资源管理、系统可靠性和可扩展性、网络效应实现、安全性和隐私保护以及复杂的运维管理等多方面的问题。这些挑战不利于项目的冷启动,并且取决于赛道的发展情况和时机。在orchestration layer还未发展成熟吃下一定市场份额时,做aggregation layer是不太现实的。 目前,Aethir、Render Network、Akash Network和Gensyn都属于Orchestration layer,他们旨在为特定的目标和客户群体提供服务。Aethir目前的主营业务是为云游戏做实时渲染,并为B端客户提供一定的开发和部署环境和工具; Render Network主营业务是视频渲染,Akash Network的任务是提供一个类似于淘宝的交易平台,而Gensyn深耕于AI training领域。io.net的定位是Aggregation layer,但目前io实现的功能还离aggregation layer的完整功能还有一段距离,虽然已经收集了Render Network和Filecoin的硬件,但对于硬件资源的抽象和整合还未完成。 2.3 硬件设施 目前,不是所有项目都公布了网络的详细数据,相对来说,io.net explorer的UI做的是最好的,上面可以看到GPU/CPU数量、种类、价格、分布、网络用量、节点收入等等参数。但是4月末时io.net的前端遭到了攻击,由于io没有对 PUT/POST 的接口做 Auth,黑客篡改了前端数据。这为其他项目的隐私、网络数据可靠性也敲响了警钟。 从GPU的数量和model来说,作为聚合层的io.net收集的硬件数量理应是最多的。Aethir紧随其后,其他项目的硬件情况没有那么透明。从GPU model上可以看到,io既有A100这样的专业级GPU,也有4090这样的消费级GPU,种类繁多,这符合io.net aggregation的定位。io可以根据具体任务需求选择最合适的GPU。但不同型号和品牌的GPU可能需要不同的驱动和配置,软件也需要进行复杂的优化,这增加了管理和维护的复杂性。目前io各类任务分配主要是靠用户自主选择。 Aethir发布了自己的矿机,五月时,高通支持研发的Aethir Edge正式推出。它将打破远离用户的单一集中化的GPU集群部署方式,将算力部署到边缘。Aethir Edge将结合H100的集群算力,共同为AI场景服务,它可以部署训练好的模型,以最优的成本为用户提供推理计算服务。这种方案离用户更近,服务更快速,性价比也更高。 从供给和需求来看,以Akash Network为例,其统计数据显示,CPU总量约为16k,GPU数量为378个,按照网络租赁需求,CPU和GPU的利用率分别是11.1%和19.3%。其中只有专业级GPU H100的租用率是比较高的,其他的model大多处于闲置状态。其他网络面临的情况大体与Akash一致,网络总体需求量不高,除了如A100、H100等热门芯片,其他算力大多处于闲置的状态。 从价格优势来看,与除云计算市场巨头而言,与其他传统服务商相比成本优势并不突出。 2.4 财务表现 不管token model如何设计,一个健康的tokenomics都需要满足以下几个基本条件:1)用户对于网络的需求需要体现在币价上,也就是说代币是可以实现价值捕获的;2)各个参与者,不管是开发者、节点、用户都需要得到长期的公平的激励;3)保证去中心化的治理,避免内部人士过度持有;4)合理的通胀和通缩机制和代币释放周期,避免大幅波动的币价影响网络的稳健型和持续性。 如果把代币模型笼统地分为BME(burn and mint equilibrium)和SFA(stake for access),这两种模式的代币通缩压力来源不同:BME模型在用户购买服务后会燃烧代币,因此系统的通缩压力是由需求决定的。而SFA要求服务提供者/节点质押代币以获得提供服务的资格,因此通缩压力是由供给带来的。BME的好处在于更加适合用于非标准化商品。但如果网络的需求不足,可能面临着持续通胀的压力。各项目的代币模型在细节上有差异,但总体来说,Aethir更偏向于SFA,而io.net,Render Network和Akash Network更偏向于BME,Gensyn尚未可知。 从收入来看,网络的需求量会直接反映在网络整体收入上(这里不讨论矿工的收入,因为矿工除了完成任务所获的报酬还有来自于项目的补贴。)从公开的数据上来看io.net的数值是最高的。Aethir的收入虽然还未公布,但从公开信息来看,他们宣布已经与很多B端客户签下了订单。 从币价来说,目前只有Render Network和Akash Network进行了ICO。Aethir和io.net也在近期发币,价格表现需要再观察,在这不做过多讨论。Gensyn的计划还不清楚。从发币的两个项目以及同一个赛道但没有包含在本文讨论范围内的已经发币的项目,综合来讲,去中心化算力网络都有非常亮眼的价格表现,一定程度体现了巨大的市场潜力和社区的高期望。 2.5 总结 去中心化算力网络赛道总体发展很快,已经有很多项目可以依靠产品服务客户,并产生一定收入。赛道已经脱离了纯叙事,进入可以提供初步服务的发展阶段。 需求疲软是去中心化算力网络所面临的共性问题,长期的客户需求没有被很好地验证和挖掘。但需求侧并没有过多影响币价,已经发币的几个项目表现亮眼。 AI是去中心化算力网络的主要叙事,但并不是唯一的业务。除了应用于AI training和inference之外,算力还可被用于云游戏实时渲染,云手机服务等等。 算力网络的硬件异质化程度较高,算力网络的质量和规模需要进一步提升。 对于C端用户来说,成本优势不是十分明显。而对于B端用户来说,除了节约成本之外,还需考虑服务的稳定性、可靠性、技术支持、合规和法律支持等等方面,而Web3的项目普遍在这些方面做得不够好。 3 Closing thoughts AI的爆发式增长带来的对于算力的巨量需求是毋庸置疑的。自 2012 年以来,人工智能训练任务中使用的算力正呈指数级增长,其目前速度为每3.5个月翻一倍(相比之下,摩尔定律是每18个月翻倍)。自2012 年以来,人们对于算力的需求增长了超过300,000倍,远超摩尔定律的12倍增长。据预测,GPU市场预计将在未来五年内以32%的年复合增长率增长至超过2000亿美元。AMD的估计更高,公司预计到2027年GPU芯片市场将达到4000亿美元。 图片来源: https://www.stateof.ai/ 因为人工智能和其他计算密集型工作负载(如AR/VR渲染)的爆发性增长暴露了传统云计算和领先计算市场中的结构性低效问题。理论上去中心化算力网络能够通过利用分布式闲置计算资源,提供更灵活、低成本和高效的解决方案,从而满足市场对计算资源的巨大需求。因此,crypto与AI的结合有着巨大的市场潜力,但同时也面临与传统企业激烈的竞争、高进入门槛和复杂的市场环境。总的来说,纵观所有crypto赛道,去中心化算力网络是加密领域中最有希望获得真实需求的的垂直领域之一。 图片来源:https://vitalik.eth.limo/general/2024/01/30/cryptoai.html 前途是光明的,道路是曲折的。想要达到上述的愿景,我们还需要解决众多的问题与挑战,总结来说:现阶段如果单纯提供传统的云服务,项目的profit margin很小。从需求侧来分析,大型企业一般会自建算力,纯C端开发者大多会选择云服务,真正使用去中心化算力网络资源的中小型企业是否会有稳定需求还需要进一步挖掘和验证。另一方面,AI是一个拥有极高上限和想象空间的广阔市场,为了更广阔的市场,未来去中心化算力服务商也需要向模型/AI服务进行转型,探索更多的crypto + AI的使用场景,扩大项目能够创造的价值。但目前来说,想要进一步发展到AI领域还存在很多问题和挑战: 价格优势并不突出:通过之前的数据对比可以看出,去中心化算力网络的成本优势并没有得到体现。可能的原因在于对于需求大的专业芯片H100、A100等,市场机制决定了这部分硬件的价格不会便宜。另外,去中心化网络虽然能收集闲置的算力资源,但去中心化带来的规模经济效应的缺乏、高网络和带宽成本以及极大的管理和运维的复杂性等隐形成本会进一步增加算力成本。 AI training的特殊性:利用去中心化的方式进行AI trainning在现阶段有着巨大的技术瓶颈。这种瓶颈从GPU的工作流程当中可以直观体现,在大语言模型训练中,GPU首先接收预处理后的数据批次,进行前向传播和反向传播计算以生成梯度。接下来,各GPU会聚合梯度并更新模型参数,确保所有GPU同步。这个过程将不断重复,直到训练完成所有批次或达到预定轮数。这个过程中涉及到大量的数据传输和同步。使用什么样的并行和同步策略,如何优化网络带宽和延迟,降低通讯成本等等问题,目前都还未得到很好的解答。现阶段利用去中心化算力网络对AI进行训练还不太现实。 数据安全和隐私:大语言模型的训练过程中,各个涉及数据处理和传输的环节,比如数据分配、模型训练、参数和梯度聚合都有可能影响数据安全和隐私。并且数据隐私币模型隐私更加重要。如果无法解决数据隐私的问题,就无法在需求端真正规模化。 从最现实的角度考虑,一个去中心化算力网络需要同时兼顾当下的需求发掘和未来的市场空间。找准产品定位和目标客群,比如先瞄准非AI或者Web3原生项目,从比较边缘的需求入手,建立起早期的用户基础。同时,不断探索AI与crypto结合的各种场景,探索技术前沿,实现服务的转型升级。 参考文献 https://www.stateof.ai/ https://vitalik.eth.limo/general/2024/01/30/cryptoai.html https://foresightnews.pro/article/detail/34368 https://app.blockworksresearch.com/unlocked/compute-de-pi-ns-paths-to-adoption-in-an-ai-dominated-market?callback=%2Fresearch%2Fcompute-de-pi-ns-paths-to-adoption-in-an-ai-dominated-market https://research.web3caff.com/zh/archives/17351?ref=1554 来源:金色财经
lg
...
金色财经
2024-06-12
苹果终于也开源了 重磅发布OpenELM模型 搭载AI的iPhone就要来了
go
lg
...
-small-open-source-
ai
-
models
-designed-to-run-on-device/ 2.https://www.theverge.com/2024/4/24/24139266/apple-
ai
-
model
-openelm-iphone-laptops-strategy 中文内容由元宇宙之心(MetaverseHub)团队编译,如需转载请联系我们。 来源:金色财经
lg
...
金色财经
2024-04-26
V神谈区块链+AI的四大方向:用3EX AI交易探索智能化交易新模式
go
lg
...
数据,依赖于根据细分问题而量身定制的
AI
Model
开展决策。3EX AI交易平台的个性化定制交易策略功能是让 AI 能够代替人类进行决策和行为的初步探索。 四、 AI 作为目标 AI 作为目标强调了 Crypto 对 AI 的帮助,即如何利用 Crypto 创造出更好的 AI 模型和产品,这或许包括多个评判标准:更高效、更精确、更去中心化等等。数据是进行模型训练的基础,去中心化数据协议将激励个人或企业提供更多私域数据,同时利用密码学保障数据隐私,避免个人敏感数据的泄露。去中心化算力赛道是目前最火热的 AI 赛道,协议通过提供供需双方的匹配市场,促进长尾算力与 AI 企业的匹配,用于模型的训练和推理。Crypto 对算法的赋能是实现去中心化 AI 最核心的环节,实现创建去中心化的、可信任的黑匣子 AI。 3EX AI交易平台:探索智能化交易新模式 1. 自助创建和定制策略:3EX平台利用基于ChatGPT的人工智能技术,允许用户通过自然语言处理技术轻松创建和执行量化交易策略。这种智能化的策略创建不仅简化了交易流程,也让个性化交易成为可能。 2. 实时模拟与自动执行:3EX平台提供的即时模拟功能使用户能够在真实投入市场前,实时查看交易策略的可能盈亏情况,从而优化和调整自己的策略。这种即时反馈机制极大地提高了交易的透明度和用户的信心。一旦策略优化完成,平台还能自动执行交易,极大减少操作复杂性和时间延迟,提高交易效率。 3. 跟单交易功能:为了满足不同用户的需求,3EX还提供了跟单交易功能,用户可以选择并跟随其他成功交易者的策略,享受AI智能交易的便利。这不仅为用户提供了一种相对被动的收入机会,还通过分润机制为策略提供者创造了额外的收益来源,促进了社区内的互助和共赢。 3EX AI交易平台的这些创新特性,为用户提供了强大的工具,以智能、高效的方式参与市场,最大化地利用了AI技术在加密交易中的应用潜力。 3EX相关链接: Twitter(EN): https://twitter.com/3exglobal Twitter(CN): https://twitter.com/3EX_ZH Telegram(EN):https://t.me/global_3ex Telegram(CN):https://t.me/chinese_3ex Discord:https://discord.gg/KHVVnPgpeT Facebook: https://www.facebook.com/profile.php?id=100092234370403 Instagram: https://www.instagram.com/3EX.Exchange/ Medium: https://medium.com/@3ex Reddit: https://www.reddit.com/r/3EX_AITrading/ Youtube: https://youtube.com/@3EXGLOBAL?feature=shared Linkedin:https://www.linkedin.com/company/3ex-com/about/ TikTok: https://www.tiktok.com/@3ex_exchange?_t=8klgxCKAz8A&_r=1 来源:金色财经
lg
...
金色财经
2024-04-08
Metrics Ventures研报:从Vitalik文章出发 Crypto×AI有哪些值得关注的细分赛道?
go
lg
...
和数据,依赖于根据细分问题而量身定制的
AI
Model
开展决策。可以注意到,AI应用在本文中被同时归入两类:接口与规则,从开发愿景来说,AI应用应成为独立决策的Agent,但目前无论是AI模型的有效性、集成AI的安全性,都无法满足这一要求,甚至作为接口都略微勉强,AI应用正处于非常早期的阶段,具体项目在前文已有介绍,在此不做赘述。 Autonomous Agent被V神在第一类(AI作为参与者)中提及,从远期愿景来说,本文将其归为第三类。Autonomous Agent利用大量数据和算法来模拟人类的思维和决策过程,并执行各种任务和交互。本文主要关注Agent的通信层、网络层等基础设施,这些协议定义了Agent的归属权,建立了Agent的身份、通信标准和通信方式,连接多个Agent应用,能够协同进行决策和行为。 zkML/opML:通过密码学或经济学的方法,保证经过了正确的模型推理过程而提供具有可信性的输出。安全性问题对于将AI引入智能合约非常致命,智能合约依靠输入产生输出并自动化执行一系列功能,一旦AI作恶给予了错误的输入,将会为整个Crypto系统引入极大的系统性风险,因此zkML/opML和可能的一系列潜在解决方案,都是让AI进行独立行动和决策的基础。 最后,三者构成AI作为运行规则的三个基础层次:zkml/opml作为最底层的基础设施,保证协议的安全性;Agent协议建立起Agent生态系统,能够协同进行决策和行为;AI应用,也是具体的AI Agent,将不断提高在某一领域的能力,并实际进行决策和行动。 4.1 Autonomous Agent AI Agent在Crypto世界的应用是自然的,从智能合约到TG Bots再到AI Agents,加密世界正走向更高的自动化和更低的用户门槛。智能合约虽然是通过不可篡改的代码自动执行功能,但仍需要依赖外部触发而唤醒,且无法自主运行和连续运行;TG Bots降低了用户门槛,用户不需要直接与加密前端交互,而是通过自然语言完成链上交互,但只能完成极为简单和具体的任务,依然无法实现用户意图为中心的交易;AI Agents则具备一定的独立决策能力,理解用户的自然语言,并自主找到和组合起其他的Agent和链上工具,完成用户指定的目标。 AI Agent正在致力于大幅提高加密产品的使用体验,而区块链也能够助力AI Agent的运行更加去中心化、透明和安全,具体的帮助在于: 通过代币激励更多的开发者提供Agent NFT确权促进基于Agent的收费与交易 提供链上的Agent身份和注册机制 提供不可篡改的Agent活动日志,对其行为进行及时的溯源和追责 这一赛道的主要项目如下: Autonolas:Autonolas通过链上协议支持Agent和相关组件的资产确权和可组合性,使代码组件、Agent和服务能够在链上被发现和重复利用,并激励开发者获得经济补偿。开发者开发了完整的Agent或组成部分后,将对代码进行链上注册并获得NFT,代表对代码的所有权;Service Owner会联合多个Agent创建一个服务并在链上注册,并吸引Agent Operators来实际执行服务,用户通过付费使用服务。 Fetch.ai:Fetch.ai在AI领域具有很强的团队背景和开发经验,目前正在关注AI Agent赛道。协议由四个关键层组成:AI Agents、Agentverse、AI Engine和Fetch Network。AI Agents是系统的核心,其他则为辅助构建Agent服务的框架和工具。Agentverse是一个软件即服务平台,主要用于创建和注册AI Agent。AI Engine的目标是通过读取用户自然语言输入,将其转换为可操作的人物,并在Agentverse中选择已注册的最合适的AI Agent来执行任务。Fetch Network是协议的区块链层,AI Agent必须在链上的Almanac合约中注册,才能与其他Agent开始协同服务。值得注意的是,Autonolas目前专注于crypto世界的Agent构建,将链下的Agent操作引入链上;Fetch.ai的关注范围则包括Web2世界,如旅行预订、天气预测等。 Delysium:Delysium从游戏转型为AI Agent协议,主要包括两个层:通信层和区块链层,通信层是Delysium的主干,提供安全且可扩展的基础设施,使得AI Agent之间能够快速高效的通信,区块链层对Agent进行身份验证,并通过智能合约实现对Agent行为的不可篡改记录。具体来说,通信层为Agent之间建立了统一的通信协议,采用标准化的消息系统,让Agent之间可以通过一种通用语言无障碍地交流,此外建立了服务发现协议和API,使得用户和其他Agent能够快速发现和连接可用的Agent。区块链层主要包括两个部分:Agent ID和Chronicle智能合约,Agent ID确保只有合法的Agent才能访问网络,Chronicle则是Agent做出的所有重要决策和行为的日志存储库,上链后不可篡改,确保对Agent行为的可信追溯。 Altered State Machine:通过NFT为Agent的资产确权和交易制定了标准,具体分析可见第1部分,虽然ASM目前主要接入游戏,但其作为基础性的规范同样具有向其他Agent领域扩展的可能。 Morpheous:正在构建一个AI Agent生态网络,协议旨在连接Coder、Computer provider、Community Builder和Capital四种角色,分别为网络提供AI Agent、支持Agent运行的算力、前端和开发工具以及资金,MOR将采取Fair launch的形式,向提供算力的矿工、stETH质押者、Agent或智能合约开发贡献者、社区开发贡献者提供激励。 4.2 zkML/opML 零知识证明目前有两个主要应用方向: 以更低的成本在链上证明运算得到了正确的运行(ZK-Rollup和ZKP跨链桥正在利用ZK的这一特点); 隐私保护:不需要知道计算的细节,也可以证明计算得到了正确的执行。 同样地,ZKP在机器学习中的应用同样可以被分为两类: 推理验证:即通过ZK-proof,在链上以较低的成本证明AI模型推理这一密集计算的过程在链下得到了正确的执行。 隐私保护:又可以分为两类,一是对数据隐私的保护,即在公开的模型上使用隐私数据进行推理,可以利用ZKML对隐私数据进行保护;二是对模型隐私的保护,希望隐藏模型的权重等具体信息,从公开的输入中运算并得出输出结果。 笔者认为目前对Crypto更为重要的是推理验证,我们在此对推理验证的场景进行进一步阐述。从AI作为参与者开始,到AI作为世界的规则,我们希望将AI成为链上流程的一部分,但AI模型推理计算成本过高,无法直接在链上运行,将这一过程放到链下,意味着我们需要忍受这一黑盒子带来的信任问题——AI模型运行者是否篡改了我的输入?是否使用了我指定的模型进行推理?通过将ML模型转化成ZK电路,可以实现:(1)较小的模型上链,将小的zkML模型存储到智能合约中,直接上链解决了不透明的问题;(2)在链下完成推理,同时生成ZK证明,通过在链上运行ZK证明来证明推理过程的正确性,基础架构将包括两个合约——主合约(使用ML模型输出结果)和ZK-Proof验证合约。 zkML还处于非常早期的阶段,面临着ML模型向ZK电路转化的技术问题,以及极高的运算和密码学开销成本。和Rollup的发展路径一样,opML从经济学的角度出发,成为了另一种解决方案,opML使用Arbitrum 的 AnyTrust 假设,即每个主张至少有一个诚实节点,确保提交者或至少一个验证者是诚实的。但OPML只能成为推理验证的替代方案,无法实现隐私保护。 目前的项目正在构建zkML的基础设施,并在努力探索其应用,应用的建立同样重要,因需要清楚地向加密用户证明zkML中重要作用,证明最终价值能够抵消巨大成本。在这些项目中,有些专注于与机器学习相关的ZK技术研发(如Modulus Labs),有些则是更通用的ZK基础设施搭建,相关项目包括: Modulus 正在使用 zkML 将人工智能应用于链上推理过程。Modulus于2月27日推出了zkML证明器Remainder,与同等硬件上的传统AI推理相比,实现了180倍的效率提升。此外,Modulus与多个项目合作,探索zkML的实际用例,如与Upshot合作,通过使用具有ZK证明的人工智能,收集复杂的市场数据、评估NFT价格,并将价格传到链上;与AI Arena合作,证明正在战斗的Avatar和玩家所训练的是同一个。 Risc Zero将模型放在链上,通过在 RISC Zero 的 ZKVM 中运行机器学习模型,可以证明模型涉及的确切计算是正确执行的。 Ingonyama正在开发专门用于 ZK 技术的硬件,这可能降低了进入 ZK 技术领域的门槛,并且 zkML 也有可能用于模型训练过程。 5 AI作为目标 如果说前面三类更侧重于AI如何赋能于Crypto,那么“AI作为目标”强调了Crypto对AI的帮助,即如何利用Crypto创造出更好的AI模型和产品,这或许包括多个评判标准:更高效、更精确、更去中心化等等。 AI包括三个核心:数据、算力和算法,在每一个维度,Crypto都在致力于为AI提供更有效的助力: 数据:数据是进行模型训练的基础,去中心化数据协议将激励个人或企业提供更多私域数据,同时利用密码学保障数据隐私,避免个人敏感数据的泄露。 算力:去中心化算力赛道是目前最火热的AI赛道,协议通过提供供需双方的匹配市场,促进长尾算力与AI企业的匹配,用于模型的训练和推理。 算法:Crypto对算法的赋能是实现去中心化AI最核心的环节,也是V神文章中“AI作为目标”叙述的主要内容,创建去中心化的、可信任的黑匣子AI,那么前文所说的对抗式机器学习的问题则将得到解决,但将面临极高的密码学开销等一系列阻碍。此外,“使用加密激励来鼓励制作更好的AI”也可以在不完全陷入密码学完全加密的兔子洞的情况下实现。 大型科技公司对数据和算力的垄断共同造成了对模型训练过程的垄断,闭源模型成为大型企业获利的关键。从基础设施的角度,Crypto通过经济手段激励数据和算力的去中心化供应,同时通过密码学的方法保证过程中的数据隐私,并以此为基础助力于去中心化的模型训练,以实现更透明、更去中心化的AI。 5.1 去中心化数据协议 去中心化数据协议主要以数据众包的形式开展,激励用户提供数据集或数据服务(如数据标注)用于企业进行模型训练,并开设Data Marketplace促进供需双方的匹配,一些协议也正在探索通过DePIN激励协议,获取用户的浏览数据,或利用用户的设备/带宽完成网络数据爬取。 Ocean Protocol:对数据确权并代币化,用户可以通过无代码方式在Ocean Protocol完成对数据/算法的NFT创建,同事创建相应的datatoken来控制对数据NFT的访问。Ocean Protocol通过Compute To Data(C2D)来确保数据的隐私性,使用者只能获得根据数据/算法的输出结果,而无法完整下载。Ocean Protocol于2017年成立,作为数据市场,在本轮热潮中很自然地搭上了AI的快车。 Synesis One:该项目是Solana上的Train2Earn平台,用户通过提供自然语言的数据和数据标注来获取$SNS奖励,用户通过提供数据支持挖矿,数据在验证后会进行存储和上链,并由AI公司用来训练和推理。具体来说,挖矿者分为三类:Architect/Builder/Validator,Architect负责创建新的数据任务,Builder在相应的数据任务中提供语料,Validator则对Builder提供的数据集进行验证。完成的数据集会被存入IPFS中,并在链上保存数据来源和IPFS地址们同事会被存储在链下的数据库中供AI公司(目前为Mind AI)使用。 Grass:被称为AI的去中心化数据层,本质上是一个去中心化网络抓取市场,并以此获得数据来用于AI模型训练。互联网网站是一个重要的AI训练数据来源,包括推特、谷歌、Reddit在内的许多网站的数据都具有重要价值,但这些网站正在不断对数据爬取加以限制。Grass利用个人网络中未使用的带宽,通过使用不同的IP地址来减少数据封锁带来的影响,来抓取公共网站中的数据,完成数据初步清理,成为AI模型训练企业和项目的数据源。目前Grass正处于Beta测试阶段,用户可提供带宽获取积分以领取潜在空投。 AIT Protocol:AIT Protocol是去中心化数据标注协议,旨在为开发者提供高质量数据集用于模型训练。Web3使得全球劳动力能够快速接入网络,并通过数据标注获得激励,AIT的数据科学家将对数据进行预标注,随后由用户进行进一步处理,经过数据科学家检查后,通过质量检测的数据将提供给开发者。 除了上述数据提供和数据标注协议,曾经的去中心化存储类基础设施,如Filecoin、Arweave等也将为更分散化的数据供给助力。 5.2 去中心化算力 AI时代,算力的重要性不言而喻,不仅英伟达的股价日攀高峰,在Crypto世界,去中心化算力可以说是AI赛道炒作最热烈的细分方向——在市值前200的11个AI项目中,做去中心化算力的项目就有5个(Render/Akash/AIOZ Network/Golem/Nosana),并在过去几个月中收获了高倍涨幅。在小市值的项目中也看到许多去中心化算力的平台出现,虽然刚刚起步,但伴随着英伟达大会的浪潮,只要是与GPU沾边,都快速收获了一波大涨。 从赛道特点来看,这一方向项目的基本逻辑高度同质化——通过代币激励使得拥有闲置算力资源的人或企业提供资源,并由此大幅降低使用费用,建立起算力的供需市场,目前,主要的算力供应来自于数据中心、矿工(尤其在以太坊转为PoS后)、消费级算力以及与其他项目的合作。虽然同质化,但这是一个头部项目拥有较高护城河的赛道,项目的主要竞争优势来源于:算力资源、算力租赁价格、算力使用率以及其他技术优势。这一赛道的龙头项目包括Akash、Render、io.net和Gensyn。 根据具体业务方向,项目可以被粗分为两类:AI模型推理和AI模型训练。由于AI模型训练对算力和带宽的要求远高于推理,比分布式推理的落地难度更大,且模型推理的市场快速扩展,可预测的收入将在未来大幅高于模型训练,因此目前绝大多数项目主攻推理方向(Akash、Render、io.net),主攻训练方向的龙头即为Gensyn。其中,Akash和Render诞生较早,并非是为AI计算而生,Akash最初用于通用计算,Render则主要应用于视频和图片渲染,io.net则为AI计算专门设计,但在AI将算力需求提升了一个Level后,这些项目都已倾向于AI方面的开发。 最为重要的两个竞争指标依然来自于供应端(算力资源)和需求端(算力使用率)。Akash拥有282个GPU和超过2万个CPU,已完成16万次租赁,GPU网络的利用率为50-70%,在这一赛道是一个不错的数字。io.net拥有40272个GPU和5958个CPU,同时拥有Render的4318个GPU和159个CPU、Filecoin的1024个GPU的使用许可,其中包括约200块H100和上千块A100,目前已完成推理151,879次,io.net正在用极高的空投预期吸引算力资源,GPU的数据正在快速增长,需要等代币上线后对其吸引资源的能力重新评估。Render和Gensyn则并未公布具体数据。此外,许多项目正在通过生态合作来提高自己在供应与需求端的竞争力,如io.net采用Render和Filecoin的算力来提高自己的资源储备,Render建立了计算客户端计划(RNP-004),允许用户通过计算客户端——io.net、Nosana、FedMl、Beam,来间接接入Render的算力资源,从而快速从渲染领域过渡到人工智能计算。 此外,去中心化计算的验证依然是一个问题——如何证明拥有算力资源的工作者正确地执行了计算任务。Gensyn正在尝试建立这样一个验证层,通过概率学习证明、基于图的精确定位协议以及激励来保证计算的正确性,其中的验证者和举报者共同对计算进行检查,因此Gensyn除了为去中心化训练提供了算力支持,其建立的验证机制也具有独特价值。位于Solana上的计算协议Fluence同样增加了对计算任务的验证,开发人员可以通过检查链上提供商发布的证明来验证其应用程序是否按预期运行以及计算是否正确执行。但现实的需求依然是”可行“大于”可信“,计算平台必须首先具有足够的算力才有竞争的可能,当然对于出色的验证协议来说,可以选择接入其他平台的算力,成为验证层和协议层来发挥独特作用。 5.3 去中心化模型 距离Vitalik所描述的终极场景(下图所示)还非常遥远,我们目前还无法实现通过区块链和加密技术创建一个可信任的黑盒AI,来解决对抗性机器学习的问题,将数据训练到查询输出的整个AI运行过程进行加密处理是一笔非常大的开销。但目前正在有项目尝试通过激励机制创建更好的AI模型,首先打通了不同模型之间封闭的状态,创造了模型之间相互学习、协作和良性竞争的格局,Bittensor是其中最具代表性的项目。 Bittensor:Bittensor正在促进不同AI模型之间的组合,但值得注意的是,Bittensor本身不进行模型的训练,而是主要提供AI推理的服务。Bittensor的32个子网专注于不同的服务方向,如数据抓取、文本生成、Text2Image等,在完成一项任务时,分属不同方向的AI模型可以相互协作。激励机制促进了子网之间、以及子网内部的竞争,目前奖励以每块1个TAO的速度发放,每日总计发放约7200个TAO代币,SN0(根网络)中的64个验证器根据子网性能,决定了这些奖励在不同子网之间的分配比例,子网验证器则通过对矿工的工作评价,决定在不同矿工之间的分配比例,由此表现更好的服务、表现更好的模型获得更多激励,促进了系统整体推理质量的提高。 6 结语:MEME炒作还是技术革命? 从Sam Altman动向带来ARKM和WLD的价格疯涨,到英伟达大会带飞一系列参会项目,很多人正在对AI赛道的投资理念发生调整,AI赛道究竟是MEME炒作还是技术革命? 除了少数名人题材(比如ARKM和WLD),AI赛道整体更像是”以技术叙事为主导的MEME“。 一方面,Crypto AI赛道的整体炒作一定是与Web2 AI的进展紧密挂钩的,OpenAI为首的外部炒作将成为Crypto AI赛道的导火索。另一方面,AI赛道的故事依然以技术叙事为主,当然,这里我们强调的是”技术叙事“而非”技术“,这就使得对AI赛道细分方向的选择和项目基本面的关注依然重要,我们需要找到有炒作价值的叙事方向,也需要找到有中长期竞争力和护城河的项目。 从V神提出的四类结合可能中,可以看到的是叙事魅力和落地可能性的相互权衡。在以AI应用为代表的第一类和第二类中,我们看到了许多GPT Wrapper,产品落地快但业务同质化程度也较高,先发优势、生态系统、用户数量和产品收入则成为同质化竞争中可讲的故事。第三类和第四类代表着AI与Crypto结合的宏大叙事,如Agent链上协作网络、zkML、去中心化重塑AI,都处于早期阶段,具有技术创新的项目将会快速吸引资金,即使只是很早期的落地展示。 来源:金色财经
lg
...
金色财经
2024-03-18
2024年币圈的10个发展趋势
go
lg
...
而基于ZKML来支持智能合约安全地调度
AI
Model
,进而支持更多的应用逻辑和场景探索。 现在上车还来得及吗? 肯定是来得及的,至于你最终挣了多少也不完全取决于你啥时候上车,表面上看,现在上车远远不如去年,但是也未必不如去年上车的人挣得少,不然大可以问问去年涨的那么多又有多少人挣钱了,甚至跑赢大饼涨幅的有几个,赚多少更多的取决于下车,也就是2024-2025这两个关键的年份,不要管上车的问题,如何下车才是至关重要的。 接下来短中线布局: ETH坎昆升级+ BTC4月减半是一个绝佳的机会窗口, BTC减半预期会提前发酵,也基本在今年下半年这个阶段。 ETH+BTC—两大最核心的币—两个最重要的节点—时间还重叠了, 即今年下半年关注什么币? 可以预见的利好币 ETH坎昆升级概念币就那么几个,大致分为3个分类: 1、L2链币: ARB 、 OP 、 METIS ; L2垂直链: LRC 、 IMX 、 DYDX ; 2、L2应用:Arb系的 GMX 、 MAGIC 、 RDNT,Op系的 SNX、 VELO 3、上轮最为活力的新币,NFT交易—— BLUR; BRC20—— ORDI; MEME —— PEPE,教育—— EDU :新公链—— SUI APT 4、Blur不再多说,比较生不逢时,近期大量解锁,价格一跌在跌 但胜在无敌的基本盘和NFT市场占有率, NFT只要不亡,Blur洗盘结束一定会迎来高光时刻。 5、ORDI、PEPE这类带有MEME属性的, 一旦市场流动性再次雄起,这两个是流动性溢出最好的承接代币。 6、 AI 概念:年底gpt5能发布,会是比较好的情绪引爆点,龙头 AGIX, FET是关注重点 7、 SSV —— ETH2 .0升级后,可以看到质押量无视市场波动稳定上升,若市场有回暖迹象可以立即着手布局的板块。 重点 SSV RPL , 8、减产减半—— DASH ZEN ZEC减产:重点关注还是ZEN!小市值,高回报!重点是强庄控盘! 新的一年已经开始,创建一个高质量圈子,主要是讲解币圈的各种基本行业知识,热点版块的轮动,还有识别顶底的基础方法,如何更好的把握住这个牛市,等等一系列的知识,感兴趣的可以找我。 来源:金色财经
lg
...
金色财经
2024-01-15
MT Capital 研报:Messari Crypto Theses 2024 重点押注 Solana 与 AI + DePIN 赛道
go
lg
...
L 等创新使得智能合约能够安全地调度
AI
Model
,从而支持更加复杂的应用逻辑。 Token 提供了一种奖励个人微调模型和收集有价值的现实世界数据的途径,天然地适合与 DePIN 结合。 Perps Messari 在其报告中明确地表示,如果你今年要关注 DeFi 的⼀个子赛道,那应该就是 Perp DEX。 随着 dYdX 迁移到定制化的 Cosmos 应用链,dYdX 的中央限价订单薄能够更好地提供与 CEX 相近的交易体验。并且考虑到 CEX 所面临的监管压力,dYdX 与 CEX 的距离可能会进一步缩小。 除了 Solana 生态的 Perp DEX (Drift 和 Jupiter) 外,Synthetix 也值得额外注意。随着 Synthetix Andromeda 版本的推出,Synthetix 将引入全仓保证⾦功能,⽀持多种新的抵押品类型,以及⼀系列交易、清算等方面的改进。Synthetix 也取消了长达数年的代币通胀,并有可能转入代币通缩。从币价上看,Synthetix 也是年初至今表现第四好的 DEX。 ETH ETH 目前处于两难的境地。对机构的吸引力不如 BTC 数字黄金的叙事,其他的 L0、L1、L2 竞品也在逐渐蚕食以太坊上的交易量。尽管目前来看,ETH 的投资性价比较低,但 ETH 的坎昆升级仍然值得关注。以太坊的坎昆升级能够降低 90%-99% 的 Rollup 的交易成本,使得 Rollup 与其他 Alt L1s 一样便宜。坎昆升级的交付日是最值得关注的日期之一。 分析师持仓 最有意思的莫过于 Messari 公开的分析师持仓。下图为 2023 年 Messari 分析师最大涨幅的持仓币种分布图。可以看到,分析师们的主要盈利来自于 Solana 生态以及 AI + DePIN 概念。这也反映了分析师们很好地抓住了本轮上涨行情的头部叙事。 下图为 Messari 分析师目前的持仓代币分布图(已去除出现次数仅 1 次的币种)。分析师们的主要持仓币种和 2023 年涨幅最大的持仓币种类似,仍然集中分布在 Solana 与 AI + DePIN 概念中。有意思的是,对于分析师们强烈看好的其他赛道,例如 DeSoc、DeSci、Perps 等,分析师们并未持有任何相关的代币。 下图为 Messari 分析师喜欢的赛道(已去除出现次数仅 1 次的赛道)。和此前的情况类似,依然是 Solana 与 DePIN 概念占据主导。但是去中心化衍生品超越了 AI 成为了分析师们最喜爱的赛道之一,ZK 概念也也来到了与 AI 平起平坐的重要等级。 Reference https://messari.io/crypto-theses-for-2024 MT Capital MT Capital 总部位于硅谷,是一家专注于 Web3 及相关技术的加密原生基金。我们具有全球化的团队,多元的文化背景及视角让我们对全球市场有深入的理解并能把握不同区域性的投资机会。MT Capital 的愿景是成为全球领先的区块链投资公司,专注于支持能够产生巨大价值的早期技术企业。自 2016 年以来,我们的投资组合涵盖 Infra、L1/L2、DeFi、NFT、GameFi 等各个领域。我们不仅仅是投资者,更是创始团队背后的推动力量。 官网:https://mt.capital/ 推特:https://twitter.com/MTCapital_US Medium:https://medium.com/@MTCapital_US 来源:金色财经
lg
...
金色财经
2023-12-26
生产力 SaaS 如何应对 AI 的颠覆?
go
lg
...
rietary Generative
AI
Models
。 可能是 ChatGPT 和 Github Copilot 处理代码的能力过于惊人,Sourcegraph 成为了过去两个季度在应对 GenAI 冲击时非常让人眼前一亮的公司。尽管 Sourcegraph 很早就意识到 LLM 的 Context Window 在处理多个大型库级别的代码量上仍然有缺陷,但是没有停止产品创新,在 3 月末就直面竞争,推出了由 Anthropic 的模型驱动的代码编辑助手 Cody,并且将其代码实现开源。 Cody 背后的技术方案 由于 Cody 拥有 Embeddings 的长上下文优势和 Sourcegraph 独特的 Code Graph 加持,它很快在 Hacker News 和 Twitter 上被广泛讨论。而开源的属性让 Cody 不被局限在 Sourcegraph 产品内部,而是可以当做灵活的 IDE Extension 使用,作为老公司和 AI Native 的 Cursor 等产品一同迅速成为了 Github Copilot 最可能的替代选项之一。 乘胜追击扩大价值 我们在 ChatGPT Plugin 的文章中描述过 Zapier 短期受益的局面: 当前 ChatGPT 有了很强的工具使用能力,但缺少在 api 聚合方面的 know-how,因此 Plugin 的出现在中短期之内利好 Zapier 这类聚合器产品。Zapier 在此领域积累很深,现在如果大家想在 ChatGPT 上做一些复杂操作的时候:比如将文本总结之后发社交媒体,或是记录在 Google Workspace 中,大家都会选择用 ChatGPT + Zapier 的方式来实现。在很多 use case 中,ChatGPT 只需要接入聚合器,就能做到非常好的用户体验,它也不需要接入大量 api,相当于类似 SEO 的部分由聚合器完全提供了。 …… 但长期上,这类产品面临以下冲击:一方面, api 的组织形式可能会发生变化,LLM 时代可能跨产品交互的频次和。OpenAI 最近发布了函数调用能力,使 api 的可用性显著提升,这些变化可能会弱化 Zapier 的护城河。另一方面,聚合器可能会成为操作系统机会中的一部分,微软、谷歌和苹果都可能基于自己的系统去建立相应的能力,竞争激烈。 Zapier 团队在过去 6 个月的表现非常亮眼,展现出了团队一流的视野和执行力。下面这几个产品发布可谓稳准狠: • 3 月推出 Zapier Natural Language Actions,将平台能力首次以 API 的方式开放,还支持通过 Chat 的方式调用,迅速让 Zapier 跟 GenAI 生态融合在一起; • 由于各种 SaaS 内的数据只是由 Zapier 连接而没有存储在它这里,Zapier 在 5 月推出了 Zapier Tables,帮助用户存储、编辑、共享和自动化各个 SaaS 内的数据,这样可以从用户存量数据积累的角度构建另一条护城河; • 它推出的 Chatbot 框架也迅速在社交媒体上引发大量关注,成为用户自发为各类 SaaS 引入 LUI 的首选低成本方案之一。 从不浪费红利、防止短暂红利过后被颠覆以及扎实把产品做好的角度,Zapier 是这一年来最好的生产力 SaaS 范本。而且它的联合创始人 Mike Knoop 投入力度非常大,完全致力于 Zapier 与 AI 相关的产品,并且成为了湾区 AI 生态重要的意见领袖,非常值得其他生产力 SaaS 公司学习。 03.现阶段 SaaS 的 AI 功能遭遇的 5 大挑战 尽管我们找到了 6 个正面范本试图说明有些生产力 SaaS 做得还不错,但是它们不可避免地仍然陷入到一些具体的挑战当中,下面是最典型的 5 个: 挑战 1:PR 先行给用户带来的失落 由于 ChatGPT 引发的用户热度过于突然,大量的公司在 23 年初才开始准备其 AI Offering,并且在 3 月中下旬撞车式发布 Private Beta 版本,这导致了过长的 Waitlist,大量的客户知道自己的 SaaS 供应商推出了 AI 能力,但是却一直无法购买使用,不得不随着时间冷静下来。 以 CRM 为例,许多 Salesforce 的客户对 Einstein GPT 非常感兴趣,多次向自己的销售询问报价,但是在整个 4 月和 5 月都无法得到售卖反馈,这让许多客户将这种本该严肃的产品发布视作一场无意义的 PR 行为。 Salesforce 实际上拥有一份完善的产品路线图,但是与官宣 Einstein GPT 的时间有足足 3 个月的时间差 挑战 2:AI 与产品路线图的冲突 投资人们希望 AI 颠覆 SaaS,但是大量的 SaaS 用户实际上只想安安静静地用好自己的文档、任务管理、视频会议工具们。 ClickUp 的用户们对 ClickUp 3.0 的正式推出期待已经,但是先等到 ClickUp AI,因此有一些非常一针见血的用户吐槽: ClickUp 的核心是充当项目管理工具和数据库,但是核心功能充满 bug,有些仪表盘需要几分钟才能刷新,可靠性在过去 18 个月号称占据了 70% 的资源但是几乎没有新功能出现,3.0 跳票,ClickUp Docs 的基础能力和 Google Docs 相距甚远,AI 本身无济于事。 ClickUp 试图让 AI 看起来是产品升级中的一个子项,但是大家发现他们的首要任务是 AI 而不是 3.0。 ClickUp 选择发布 AI 而不是 3.0 让人感觉受到了欺骗,3.0 不再是“指日可待”,我宁愿再看一下 Asana 或 Wrike。 其他的产品或多或少都有类似的问题存在,比如 Notion 离线模式的用户呼声可能比 Notion AI 要强不少,这样大家才能摆脱在没有 WiFi 时完全无法使用 Notion 的窘境,但是 Notion AI 率先推出并且在产品路线图中似乎占据了更多精力。 挑战 3:用户承担的定价模式 这与挑战 2 相辅相成:如果 AI 能力是免费赠送的,那用户并没有什么反感这些能力的理由。但是由于“扩 TAM 并且保毛利”的策略,用户往往需要额外付费。 不管是 ClickUp 的 5 美元 / 月 / 人、Notion 的 10 美元 / 月 / 人还是 M365 的 30 美元 / 月 / 人,让每个使用者自行付费的话不是个大数目,但是真让经营者批量采购也不是笔小钱 —— 要知道 Notion 本身的 Business 方案也就 15 美元 / 月 / 人,为员工采购 AI 相当于账单需要增加 60-70%。 挑战 4:跟 ChatGPT 抢入口 这些挑战是环环相连的! 由于挑战 1 的存在,大量习惯了 ChatGPT 的用户的工作流是将文本粘帖进 ChatGPT 问答,然后将所需的结果再复制会自己的 SaaS 当中, 由于挑战 2-3 的存在,尽管难以衡量具体比例,但是大量的用户已经订阅了 ChatGPT Plus,承担了 20 美元月 / 人的账单。这个订阅虽然略贵,但是比较通用,为每个 SaaS 的 AI Offering 单独订阅的总额可能远远超越 20 美元。 因此我们团队经常讨论的入口逻辑在实实在在地发生,生产力 SaaS 们正在和 ChatGPT Plus 争夺每个员工身上的预算,这个战争暂时还胜负未分。 挑战 5:并没有「天才」CEO 我们在去美国之前认为 Salesforce 的 Data Cloud 战略为其 GenAI 的路线图提供了自上而下的指引,但是和内部员工聊下来发现这也只是非常 high level 的指导思想,最终还是回归到营销云、服务云、工业云等各个业务团队内部自下而上提出各类 GenAI 产品功能的诉求。 其实走访下来,从大公司到一级市场独角兽,大家进行 AI 创新的方式大抵都是如此,不存在 CEO 想出一个天才的方向,然后下面闷头实现就行的情况。不同玩家之间的核心区别之一在于 CEO 愿意为这部分分配的总资源有多少。鉴于挑战 2 的存在和 AGI 带来时间表的不确定性,这可能很难平衡,并且成为未来 5 年所有 SaaS CEO 最需要思考的问题之一。 来源:金色财经
lg
...
金色财经
2023-08-02
论AI的公平性
go
lg
...
s-fairness-for-its-
ai
-
models
-d96d55f76c9b 来源:金色财经
lg
...
金色财经
2023-03-22
上一页
1
2
下一页
24小时热点
特朗普突然语出惊人!任何国家这样做都将被禁止与美国做生意 剑指中国
lg
...
中美重磅!英国金融时报:中国释放与美国开启贸易谈判的信号 北京立场软化
lg
...
突发!特朗普“终止”中国低价包裹关税豁免 取消大型零售商优惠
lg
...
中美突传“关税谈判”消息、特朗普语出惊人!比特币冲破9.7万 黄金3246非农前反弹
lg
...
中美关税谈判突发重磅消息!中国官方释重大信号 金价应声跳水、美股期货急涨
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
32讨论
#链上风云#
lg
...
90讨论
#VIP会员尊享#
lg
...
1929讨论
#CES 2025国际消费电子展#
lg
...
21讨论