钮,选定图片后上传,我这里选择了八张 CloneX 的图片作为训练素材,并为它们命名为 CloneX1-8,这里对图片的命名不要与已有单词相同,它是对你训练素材的特殊标记。图片命名方式可以参考下图。 运行 Captions,并跳过 Concept images 开始训练,训练步数设置为图片数量*100,我是用了八张图片,这里选择 800,其他参数暂时不需要调整,等后面熟练掌握了模型训练方法再进行更精准的训练。 点击运行,出现以下界面表示训练开始,等待训练完成。这里有两个训练过程,一个是训练文字,一个是训练图片。 训练完成后直接运行测试模型,这里不需要调整参数。 程序运行完后会出现一个链接,点击打开到可以作图的 WebUI 界面。 WebUI 的主页如下,1处选择使用的模型,2处输入描述词,也就是你对想要输出图片的内容,3处输入负面描述词,也就是你不想要图片出现什么内容,3可以空着不填。填写完描述词后点击生成图片。 因为我们对图片的标记是CloneX,所以我们生成图片时前部分要指定主体,这里推荐固定句式“a picture of clonex with + ......”,with 后面加对图片的描述,每个描述词(短语)之间用逗号隔开。 简单测试,这里输入提示词“a picture of clonex with beautiful girl, red hair”,结果应该会出现一个红色头发的女生CloneX形象,效果如下图: 测试2,输入提示词:“a picture of clonex with beautiful girl, Long green hair, black coat, yellow eyes”也就是绿色长发、黑色外套、黄色眼镜的女CloneX,生成效果如下 从以上两个简单测试来看,用10张以内的素材图片训练的模型就可以很好的生成想要的图片,而且这些CloneX是原本不存在的,是你创造了它们!以后喂10张图给AI,它可以给你10,000张图,这是生产力质的提升。 我把这个训练的模型上传到了 Huggingface,有兴趣的朋友可以拿去玩,在训练过程中遇到什么问题也可以联系我。链接:https://huggingface.co/wheart/clonexnft 揭晓答案,无聊猿那四张图片,前两张是AI生成的,后面两张是原图。 现有AI+Web3项目简析 随着 AIGC 的兴起、ChatGPT 的爆火、微软对 AI 百亿投资等事件的铺垫,Crypto 很多 AI 项目也得到了更多的关注,诸如 AGIX 之类的 AI 概念 Token 都迎来了一波不错的涨幅。但是就目前这些 AI+Web3 的项目来看,我并没有发现真正有想象力的产品。这段时间受到关注的项目大都是很久之前的老项目,所以只能看作是版块轮动带动了它们,长线来看没有好的标的。如果后面出现基于新 AI 技术做的产品或许可以关注。 目前很多 Crypto 大佬,像 CZ、Vitalik 都对 AI 技术产生了兴趣,所以对于 AI+Web3 之后的发展,我个人认为还是值得期待的。 总结 综合来看,目前 AIGC 在 Web3 的应用还处于非常初级的阶段。现阶段利用好 AI 工具可以对项目的设计、开发、运营工作提供极大的便利,下一阶段肯定会出现更多优秀的产品,我们要做的就是学习、使用、分析、发现,比大部分人多走一步,不错过 AIWeb3 这趟车。 来源:金色财经lg...