全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
最新一期币安IEO项目是什么来头?揭秘NFPrompt的创作者经济
go
lg
...
Prompt,一个创新的人工智能驱动的
Prompt-UGC
平台,专为新一代创作者设计,近期入选了币安孵化器孵化计划第六季的。平台目前已累计有18万个创作者,生成了120万个NFT作品。 NFPrompt凭借其多模式专有模型——包括文本到图像、视频、音乐的转换模型——为用户提供了一个独特的创作空间。在NFPrompt上,用户不仅能轻松创建NFT内容,还能参与投票和赢取来自Web3项目赞助的艺术活动奖励。 NFPrompt的核心创新在于它建立了一个去中心化的创作者经济社区。与其他仅提供基础“创作”工具的项目不同,NFPrompt为用户创作的内容提供了真正的价值和变现途径。这不仅仅是艺术创作,更是一种将想象力转化为区块链上可交易资产的模式。尤其值得一提的是,用户在opBNB平台上mint一张NFT的成本极低,仅需1美分,这极大地降低了创作和参与的门槛。 NFPrompt入选币安第六季孵化项目 NFPrompt的这一模式对现有的AI应用场景具有革命性的意义,它不仅为创作者提供了新的收入来源,也为数字艺术和NFT市场注入了新的活力。更重要的是,NFPrompt为创作者和用户提供了一个公平、透明的去中心化交易平台。通过AI的创造力和Web3的去中心化特性,NFPrompt赋能下的创作者可以在一个更加公平、透明的环境中发挥其才能,并从中获得应有的回报。 此外,NFPrompt利用Web3代币经济构建了一个可持续的生态系统。平台吸引了大量用户,成为扩大品牌曝光度的理想场所,商业客户为营销活动付费,形成奖池,进一步激励用户进行更多创作。这种正循环模式已被证实能持续增长用户群和收入。 在互联网时代下,创作者经济已经成为一种全新的经济模式。在这种模式中,独立的内容创作者通过社交媒体平台或社区等方式发布自己的原创内容,并由此获取收益。然而,在Web2的创作者经济中,创作者面临着诸如收入分配不均、内容管理权缺失、恶性竞争等问题,这些问题正驱使创作者向Web3迁移。 放飞想象力、才艺秒变现: NFPrompt用链上科技镌刻创造者的永恒价值 为了更好地顺应这一趋势,承接外溢至Web3行业的创作者,NFPrompt在产品设计方面做出了一系列创新,具有一系列明显的独家优势,具体包括: 1、设置了一系列配套的NFT创作工具,帮助用户一键开启Web3创作之旅: NFPrompt开发了多种AI驱动的创作工具,使NFT创作变得轻松且触手可及。NFPrompt提供5种不同的创作工具,如图像、视频、pfp、音乐等,将NFT创作时间从几天缩短到几秒钟。至今,已有100万件艺术品被创建并铸币。 2、举办Web3行业的主题创作比赛,吸引海量的Web2创作者加入其中: 为了激励用户创建和分享,设计了主题创作比赛,如IP重塑和logo重塑等。创作者参与主题创作比赛以获得乐趣和奖励。每场比赛约有2000-5000名创作者参与,收集40000张投票。至今,已举办超过50+主题创作比赛,参赛者(创作者或投票者)中有25%获得奖励。 3、广泛吸纳最优质的合作,并且通过数字化手段为合作伙伴持续赋能: NFPrompt为合作伙伴项目提供易于使用的工具,举办创作比赛并吸引全球创意人才。NFPrompt成为项目扩大品牌曝光的有效渠道。这些商业客户愿意为营销付费,形成活动奖励池,进一步激励用户在NFPrompt上创作。至今,已有50+项目与NFP合作举办主题创作比赛。 4、开设创作者个人资料页面,让创作者尽情展示作品魅力并提升曝光度: 个人资料页面旨在促进社区互动并展示个别创作者的创意。顶级创作者和影响者经过验证并在平台上拥有专属徽章。至今,已有100+影响者(拥有10K+推特关注者)加入NFPrompt。页面还为创作者和影响者提供与粉丝互动的渠道,分享独家内容和有价值的信息。 5、DAO形式的创作者社区已经落成,创作者互动与碰撞激发潜在的价值: 创作者在NFPrompt上创作、分享和互动,M1留存率达到55%,发现价值。至今,已有180,000名创作者创作了超过100万件艺术品。平台上的每日艺术品创作量已达到20,000件以上。 另外,NFPrompt通过去中心化存储和钱包资产地址上链等方式,保证创作者对内容的控制权;通过链上数据内容溯源和查重机制,一键杜绝抄袭和模仿等问题,保护创作者的权益;独创了多维度筛选机制,平台评选、用户评选、机器人筛选等,为优质内容提供代币、NFT等奖励;为创作者开辟多个收入渠道,实现创作者增收。比如NFPrompt通过将内容制成NFT发售,在此基础上引入了更丰富的搭上机制,创作者收益赚不停。 Top3 Dapps in BNB ecosystem 总结来看,NFPrompt在Web3时代为创作者提供了一个更公平、更透明的环境。它不仅解决了Web2时代的一些核心问题,如收益分配不公、内容控制权缺失等,还为创作者提供了更多样化的收入来源和更大的控制权,从而推动了优质原创作品的产生。 为创作者赋能的迭代尝试永不停息,NFPrompt将为用户奉上更多新体验 在为Web3创作者赋能这条路上,NFPrompt永不止步。不久之后,NFPrompt即将推出的两个新功能以更好地满足用户体验: 1、增加社交玩法:内容创作者可以售卖自己创作的NFT,让用户进入独有的付费空间。在这里,创作者可以管理和设置自己的作品和权限,创建自己的价格曲线。 2、激励用户分享: 用户通过分享自己的作品来增加作品的热度,这些数据将反馈到创作者的趋势指数上。创作者的作品或社交媒体影响力越高,他们获得的收益也越多,从而激发社区的裂变和作品的交易量。 广大用户可以通过观看详细的视频教程,领略NFPrompt为你带来的奇幻而美妙的Web3创作之旅。 NFPrompt开启空投活动 NFPrompt通过结合Web3的去中心化特性和AI的智能化能力,为创作者经济和社区建设开辟了新的道路。它不仅提供了一个平台,让创作者能够更自由地表达和变现自己的作品,而且通过建立去中心化的社区,使得创作者与粉丝之间的联系更加紧密,创作和交流更加高效和有价值。 根据官方之前的介绍,NFPrompt在早期以6000万美元的估值获得种子轮融资,在市场潜力巨大的AIGC赛道,NFPrompt未来的市场升值空间巨大,且目前在AI+web3的市场占有率很高,保守估计未来估值会达到数亿美元以上。伴随着越来越成熟的 Web3 技术,NFPrompt在 Web3 中的应用是有着无限多的可能性. 在Web3+AI的未来世界中,NFPrompt的角色不可小觑。它不仅是一个工具或平台,更是一个推动创作者经济和社区发展的强大引擎。随着技术的进步和用户需求的不断增长,NFPrompt有望在这个充满活力的市场中发挥更大的作用,引领创作者经济的新浪潮。 来源:金色财经
lg
...
金色财经
2023-12-19
一文带你了解币安第41个挖矿项目NFP
go
lg
...
NFP 是第一个 Web3 AI
Prompt
UGC 创作平台。在 NFP 上,用户可以轻松创作惊艳的作品,并一键生成 NFT 获得所有权确认。用 TikTok 的思路为用户提供流量和 AI 技术赋能,挖掘并打榜支持早期优秀创作者。使其有机会成为未来的大 v 创作者;此外,NFP 还用 tokenomics 为黑马创作者提供代币激励和粉丝积累。 NFP 上半年以 6000 万美元估值完成种子轮融资,参与社区活动的用户正在以积分系统进行代币分配和空投。NFP 日活用户量在 BNB Chain Marketplace 类目中升至第一位。 通过多种主题创作活动展现 AI 艺术创作 本着创作为社区核心的理念,NFPrompt 已经通过多种主题创作活动进行社区建设,展现 AI 艺术创作,让更多用户参与 NFP 的活动。 其中包括「NFP Credit System」和「投票系统」。 NFPrompt 正在以「NFP Credit System」进行代币分配和空投。每日在 NFP 平台上签到、创作、投票以及交易 NFT,都能够赚取相应的积分。同时社区正在举办 Credit System 搭配 Discord 身份组活动,参加活动可去 Discord 申请 Maestro 和 promphet 身份。有 Maestro 身份且绑定钱包地址的用户将可参加特定活动 / 抽奖的门票、并有代币空投资格。promphet 身份被认为是 NFP 的忠实支持者、有额外的代币分发、优秀作品的赋能、悬赏任务等权益。 NFP 上线的投票系统,用户根据此前获得的积分享有投票权,通过给「官方创作主题竞赛」的作品投票来瓜分活动奖池,同时获得票数多的优秀作品将会有官方认证和拍卖等特殊权益。投票系统上线后,NFP 会更好的奖励创作者并为优秀作品带来更多权益。 NFPrompt 路线图 除了通过文本提示更轻松地创建 AI 生成的 NFT 之外,路线图中的未来发展包括自主图像生成 AI 模型、社交功能、游戏化以及欣赏
Prompt
艺术家作品的展览空间。 下面列出了 NFP 路线图中的项目: 更多 AI 生成技术:支持更多元的内容,比如
prompt
2 video 品牌联动:将会与 web2 和 web3 品牌联合创作,并赞助用户为其品牌创作出精美的作品。 应用内编辑器:一个强大的工具,可以在将 NFT 发布到链上之前在应用内进行进一步的定制,比如特定的 MEME 图片和蓝筹 NFT 的二创。 拍卖:为排名靠前和人气高的 AI 作品进行拍卖,同时拍卖作品背后会有额外的权益。同时为收藏家、艺术家和机构定期举办 AI 作品的拍卖活动。 社交功能:NFPrompt 会基于积分系统、投票、拍卖、创作活动建立社交功能,打造社区文化。 Creator Bounties:NFP 将作为一个平台,让杰出的即兴艺术家受委托完成他们的
Prompt
设计工作。 艺术家和社区画廊:以优美的方式展示艺术,用户可以参与并了解艺术家或收藏背后的整个故事。 NPF 通过引入社区、AI、NFT 以及将想象力和 AI 艺术价值结合的代币,尝试为当代艺术和去中心化互联网文化构建一个广泛采用的 Web3 协议。 来源:金色财经
lg
...
金色财经
2023-12-19
AI+Web3的数字创作并不神秘 用对NFPrompt即可轻松解锁未来价值
go
lg
...
Prompt,一个创新的人工智能驱动的
Prompt-UGC
平台,专为新一代创作者设计,近期入选了币安孵化器孵化计划第六季的。平台目前已累计有18万个创作者,生成了107万个NFT作品。 NFPrompt凭借其多模式专有模型——包括文本到图像、视频、音乐的转换模型——为用户提供了一个独特的创作空间。在NFPrompt上,用户不仅能轻松创建NFT内容,还能参与投票和赢取来自Web3项目赞助的艺术活动奖励。 NFPrompt的核心创新在于它建立了一个去中心化的创作者经济社区。与其他仅提供基础“创作”工具的项目不同,NFPrompt为用户创作的内容提供了真正的价值和变现途径。这不仅仅是艺术创作,更是一种将想象力转化为区块链上可交易资产的模式。尤其值得一提的是,用户在opBNB平台上mint一张NFT的成本极低,仅需1美分,这极大地降低了创作和参与的门槛。 NFPrompt入选币安第六季孵化项目 NFPrompt的这一模式对现有的AI应用场景具有革命性的意义,它不仅为创作者提供了新的收入来源,也为数字艺术和NFT市场注入了新的活力。更重要的是,NFPrompt为创作者和用户提供了一个公平、透明的去中心化交易平台。通过AI的创造力和Web3的去中心化特性,NFPrompt赋能下的创作者可以在一个更加公平、透明的环境中发挥其才能,并从中获得应有的回报。 此外,NFPrompt利用Web3代币经济构建了一个可持续的生态系统。平台吸引了大量用户,成为扩大品牌曝光度的理想场所,商业客户为营销活动付费,形成奖池,进一步激励用户进行更多创作。这种正循环模式已被证实能持续增长用户群和收入。 在互联网时代下,创作者经济已经成为一种全新的经济模式。在这种模式中,独立的内容创作者通过社交媒体平台或社区等方式发布自己的原创内容,并由此获取收益。然而,在Web2的创作者经济中,创作者面临着诸如收入分配不均、内容管理权缺失、恶性竞争等问题,这些问题正驱使创作者向Web3迁移。 放飞想象力、才艺秒变现: NFPrompt用链上科技镌刻创造者的永恒价值 为了更好地顺应这一趋势,承接外溢至Web3行业的创作者,NFPrompt在产品设计方面做出了一系列创新,具有一系列明显的独家优势,具体包括: 1、设置了一系列配套的NFT创作工具,帮助用户一键开启Web3创作之旅: NFPrompt开发了多种AI驱动的创作工具,使NFT创作变得轻松且触手可及。NFPrompt提供5种不同的创作工具,如图像、视频、pfp、音乐等,将NFT创作时间从几天缩短到几秒钟。至今,已有100万件艺术品被创建并铸币。 2、举办Web3行业的主题创作比赛,吸引海量的Web2创作者加入其中: 为了激励用户创建和分享,设计了主题创作比赛,如IP重塑和logo重塑等。创作者参与主题创作比赛以获得乐趣和奖励。每场比赛约有2000-5000名创作者参与,收集40000张投票。至今,已举办超过50+主题创作比赛,参赛者(创作者或投票者)中有25%获得奖励。 3、广泛吸纳最优质的合作,并且通过数字化手段为合作伙伴持续赋能: NFPrompt为合作伙伴项目提供易于使用的工具,举办创作比赛并吸引全球创意人才。NFPrompt成为项目扩大品牌曝光的有效渠道。这些商业客户愿意为营销付费,形成活动奖励池,进一步激励用户在NFPrompt上创作。至今,已有50+项目与NFP合作举办主题创作比赛。 4、开设创作者个人资料页面,让创作者尽情展示作品魅力并提升曝光度: 个人资料页面旨在促进社区互动并展示个别创作者的创意。顶级创作者和影响者经过验证并在平台上拥有专属徽章。至今,已有100+影响者(拥有10K+推特关注者)加入NFPrompt。页面还为创作者和影响者提供与粉丝互动的渠道,分享独家内容和有价值的信息。 5、DAO形式的创作者社区已经落成,创作者互动与碰撞激发潜在的价值: 创作者在NFPrompt上创作、分享和互动,M1留存率达到55%,发现价值。至今,已有180,000名创作者创作了超过100万件艺术品。平台上的每日艺术品创作量已达到20,000件以上。 另外,NFPrompt通过去中心化存储和钱包资产地址上链等方式,保证创作者对内容的控制权;通过链上数据内容溯源和查重机制,一键杜绝抄袭和模仿等问题,保护创作者的权益;独创了多维度筛选机制,平台评选、用户评选、机器人筛选等,为优质内容提供代币、NFT等奖励;为创作者开辟多个收入渠道,实现创作者增收。比如NFPrompt通过将内容制成NFT发售,在此基础上引入了更丰富的搭上机制,创作者收益赚不停。 Top3 Dapps in BNB ecosystem 总结来看,NFPrompt在Web3时代为创作者提供了一个更公平、更透明的环境。它不仅解决了Web2时代的一些核心问题,如收益分配不公、内容控制权缺失等,还为创作者提供了更多样化的收入来源和更大的控制权,从而推动了优质原创作品的产生。 为创作者赋能的迭代尝试永不停息,NFPrompt将为用户奉上更多新体验 在为Web3创作者赋能这条路上,NFPrompt永不止步。不久之后,NFPrompt即将推出的两个新功能以更好地满足用户体验: 1、增加社交玩法:内容创作者可以售卖自己创作的NFT,让用户进入独有的付费空间。在这里,创作者可以管理和设置自己的作品和权限,创建自己的价格曲线。 2、激励用户分享: 用户通过分享自己的作品来增加作品的热度,这些数据将反馈到创作者的趋势指数上。创作者的作品或社交媒体影响力越高,他们获得的收益也越多,从而激发社区的裂变和作品的交易量。 广大用户可以通过观看详细的视频教程,领略NFPrompt为你带来的奇幻而美妙的Web3创作之旅。 NFPrompt开启空投活动 不难发现,NFPrompt通过结合Web3的去中心化特性和AI的智能化能力,为创作者经济和社区建设开辟了新的道路。它不仅提供了一个平台,让创作者能够更自由地表达和变现自己的作品,而且通过建立去中心化的社区,使得创作者与粉丝之间的联系更加紧密,创作和交流更加高效和有价值。 根据官方之前的介绍,NFPrompt在早期以6000万美元的估值获得种子轮融资,在市场潜力巨大的AIGC赛道,NFPrompt未来的市场升值空间巨大,且目前在AI+web3的市场占有率很高,保守估计未来估值会达到上亿美元。 在Web3+AI的未来世界中,NFPrompt的角色不可小觑。它不仅是一个工具或平台,更是一个推动创作者经济和社区发展的强大引擎。随着技术的进步和用户需求的不断增长,NFPrompt有望在这个充满活力的市场中发挥更大的作用,引领创作者经济的新浪潮。 相关链接: - Wedsite: https://nfprompt.io/ - Twitter: https://twitter.com/nfprompt - Medium: https://nfprompt.medium.com/ - Telegram: https://t.me/nfprompt - Discord: https://discord.com/invite/nfprompt - Whitepaper: https://docs.nfprompt.io/ 来源:金色财经
lg
...
金色财经
2023-12-16
腾讯今年回购金额已超过去10年总额;拼多多Temu成美国人最爱购物APP;苹果被看好明年市值冲向4万亿美元
go
lg
...
oulX。该模型基于海量数据训练,具备
prompt
驱动、条件可控生成、上下文理解、多模态理解等能力。在保证对话流畅、自然、具备情感温度的同时,还能覆盖百种细粒度风险类别,通过训练数据安全筛选、安全SFT数据构造、RLHF安全对齐、推理拦截等策略来构建安全体系,保证了大模型的内容生产质量和安全性。 苹果被看好明年市值冲向4万亿美元 美国投行Wedbush知名策略师Dan Ives及其团队表示,苹果公司市值有望在明年年底达到4万亿美元,这将是美国股市上第一家达到4万亿美元估值的公司。该行将苹果的目标股价从此前的240美元上调至250美元。苹果目前的市值约为3万亿美元。Wedbush估计,由于美国和中国预计会出现强劲的手机升级周期,到2024年,苹果可能会生产多达2.4亿部iPhone 15。苹果服务方面的收入也在增加。估计这部分业务的价值可能高达1.6万亿美元。 苹果计划明年彻底改革iPad产品线 苹果计划在2024年对其iPad系列产品线进行全面改革,旨在减少产品种类的混乱并提振销量。苹果目前在售的iPad机型主要分为五种:Pro、Air和Mini,以及第九代和第十代入门级iPad。这些产品之间就只有屏幕以及尺寸等微小的差异,除了入门级型号之外芯片和功能也大都相似。苹果计划让iPad Pro成为明确的顶级机型,Air作为中间层,第11代iPad 则位于底层。 微软与美国最大工会组织建立合作 微软宣布与美国劳工联合会和产业工会联合会(AFL-CIO)建立新的合作伙伴关系。AFL-CIO是美国最大的工会组织,由代表1250万工人的60个工会组成。合作协议旨在建立公开对话,探讨如何通过人工智能技术满足工人们的需求,并将他们的诉求纳入到AI工具的制定和实施当中。微软将从2024年冬季开始提供有关AI技术的学习课程,劳工领袖和工人可以直接向微软的开发人员分享经验、担忧和反馈,并将重点关注“关键特定行业”的工会和工人。 谷歌输掉了与Epic Games的反垄断诉讼 游戏开发商Epic Games在起诉苹果和谷歌非法垄断应用商店的裁决中获得胜利。Epic诉谷歌一案的陪审团裁决认定谷歌应用商店Google Play及其计费服务属于非法垄断。Epic在两年前与苹果的官司中几乎败诉,但Epic诉谷歌案的情况却截然不同。这取决于谷歌、智能手机制造商和大型游戏开发商之间签署的秘密收入分成协议。 OpenAI将修复GPT4变懒问题 OpenAI在上周遭到部分用户投诉,许多用户声称,他们在使用ChatGPT或 GPT-4 API时,会遇到回应速度慢、敷衍回答、拒绝回答、中断会话等一系列问题。OpenAI承认了这一事实,并在声称将彻底、妥当地修复相关问题。 博通预计新财年将实现500亿美元收入 博通(Broadcom)以610亿美元收购VMware的交易得以完成,使得博通可以将VMware纳入其截至2024年10月的新财年预期中。这家芯片制造商表示,新财年将实现500亿美元的收入。三年前,博通的业务规模只有现在的一半。但是,将博通称为芯片公司有些牵强,因为博通本财年有40%的收入将来自软件业务,这要归功于该公司的一连串收购,这些收购旨在实现业务多元化,降低对周期性半导体业务的依赖性。 乐天集团计划未来两个月推出AI语言模型 日本乐天集团(Rakuten)计划在未来两个月内推出自己的人工智能语言模型。目前,这家金融科技和电子商务巨头正寻求加入其他科技公司的行列,开发这项快速增长的技术。该公司正在开发自己的大型语言模型,即LLM。乐天拥有从银行到电子商务和电信等众多业务,因此拥有大量“非常独特”的数据,可以用来培训LLM。该公司计划在内部使用人工智能模型,将运营效率和营销效率提高20%。 黑莓任命首席执行官分拆业务 黑莓(BlackBerry)宣布任命John J. Giamatteo为新任首席执行官兼董事会成员,任命立即生效。自2023年11月4日起担任临时首席执行官的Richard (Dick) Lynch将继续担任董事会主席。黑莓还宣布,物联网和网络安全业务这两项业务将作为完全独立的部门运营。黑莓将不再寻求物联网业务子公司的首次公开募股。 诺基亚与英国电信集团达成合作 诺基亚和英国电信集团(BT Group)宣布达成协议,将通过诺基亚的“网络即代码”(Network as Code)平台与开发者门户网站以及英国电信集团的云原生网络开发5G网络货币化机会。诺基亚平台帮助运营商将其5G网络资产货币化,而不仅仅是单纯的连接。它为应用程序开发人员提供了软件开发工具包和开放式应用程序编程接口等工具。诺基亚也宣布了与DISH Wireless的类似协议。 媒体大亨莎莉·雷石东洽谈将派拉蒙母公司出售给Skydance 媒体大亨莎莉·雷石东(Shari Redstone)正在洽谈将派拉蒙(Paramount)母公司National Amusements的控股权出售给媒体和娱乐公司Skydance。National Amusement持有派拉蒙77%的股权。派拉蒙已故首席执行官雷石东(Sumner Redstone)的女儿莎莉·雷石东最近几周与Skydance举行了会谈。雷石东曾在2016年为争夺公司控制权展开了一场激烈的争夺战,后来又领导了哥伦比亚广播公司(CBS)和维亚康姆(Viacom)的合并工作,最终缔造了现在的派拉蒙(Paramount Global)。 美国纽约州与芯片公司合作投资100亿美元建设半导体设施 美国纽约州正与芯片公司合作,在奥尔巴尼大学投资100亿美元建设半导体研究设施,该设施将包括全球一些最先进的芯片制造设备。合作伙伴包括IBM、美光科技、应用材料和东京电子。该组织还将使用州资金从荷兰公司阿斯麦购买芯片制造设备。设备安装后,该项目及其合作伙伴将在那里开始研究下一代芯片生产。该项目将至少吸引90亿美元的私人资金。纽约州投资10亿美元购买阿斯麦设备,并建造一个拥有50000平方英尺芯片生产空间的建筑,预计建设将花费大约两年时间。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-12-13
Soul宣布上线自研大模型“SoulX”
go
lg
...
。据了解,该模型基于海量数据训练,具备
prompt
驱动、条件可控生成、上下文理解、多模态理解等能力。在保证对话流畅、自然、具备情感温度的同时,还能覆盖百种细粒度风险类别,通过训练数据安全筛选、安全SFT数据构造、RLHF安全对齐、推理拦截等策略来构建安全体系,保证了大模型的内容生产质量和安全性。
lg
...
金融界
2023-12-11
美股收盘:道指涨超130点标普创年内新高 科技股多走高挚文集团绩后涨近10%
go
lg
...
through multimodal
prompting
》的博客文章,列举了视频中演示的过程,予以解释和澄清。 Meta Platforms将在其数据中心使用新的AMDMI300X芯片。此前AMD在12月7日举行的“Advancing AI”活动上正式推出了AI GPU加速器Instinct MI300X和全球首款数据中心加速处理器AU Instinct MI300A,为算力市场提供补充。AMD称,包括MI300A和MI300X硬件产品在内,全新MI300系列AI硬件产品较英伟达H100性能最多提升60%。AMD首席执行官苏姿丰(Lisa Su)表示,AMD的MI300X硬件产品是“业界最先进的人工智能加速器”,并声称其性能优于英伟达目前的产品。
lg
...
金融界
2023-12-09
Future3 Talk四期回顾丨DePIN未来趋势 哪些应用方向值得关注?
go
lg
...
传统的UI/UX交互方式转变为以AI
Prompt
方式(语音或者文字)来完成特定的任务,这对整个Web2行业也是一种创新和赋能。 彭昭(主持人):我之前也看到过数据,60%的计算是要部署在边缘的,也就是说它未来的市场空间要比中心化的云平台大得多。 Rock:是的,从数据集的角度来讲,边缘设备本身能够采集海量的数据,包括实时数据和边缘设备本身所固有的数据,我们可以激活这些数据,主动引导边缘设备上的用户去产生数据集,比如给他们下发一些动态的Task,让他们去标注或是产生一些相应的数据集供AI公司使用。在此过程中,用户也可以通过完成这些task去拿到token reward。我们用隐私计算技术,保证用户数据不离开本地,保护用户隐私的情况下,解锁了边缘数据的价值。 Ben:就像Rock总刚刚所讲的,边缘计算也好,去中心化计算也好,想要真正实现去中心化的计算,前提是数据本身是要去中心化存储的,或者说这个数据并不是垄断的数据,如果存在去中心化计算,那么大公司、厂商或是其他dApp的开发者就无法使用这个数据集,因为很多科技巨头所掌握的数据集很少会对外开放。如果数据集是通过dApp由用户端产生的,且数据所有权掌握在用户手里,那么我们通过各种方式将这些数据做成一个市场,并进行去中心化存储,就能解锁有关数据训练、AI计算等更有价值的数据集,这也是IPDN的一个愿景。 彭昭(主持人):可以总结一下你们项目的核心亮点或优势吗? Ben:IPDN想做的是填补市场上关于热数据存储的空白。在当前的Web3存储市场中,Arweave、Filecoin等项目的问题在于整个存储流程以及模型设计得过于复杂,开发者的使用门槛很高,数据读取和写入的性能也无法达到专业化存储的要求,所以很多dApp开发者还是倾向于使用中心化存储。但近几年,一些中心化云厂商存储问题频发,这对用户的数据来说显然也并不是一个好的归宿。这就是IPDN目前想做的事情,即热数据存储。 Yan:先说DePIN的重要性。Web2是基于平台的互联网,Web3则是以用户为中心的互联网。而作为一个以用户为中心的互联网,其底层基础设施必须由用户自己把握;一个Web3.0的基础设施如果仍是由平台来控制,那么它一定是“挂羊头卖狗肉”。当然,这个世界的网络形态是复杂的,并不是说所有东西都要DePIN化,但DePIN一定要存在,这是我们做DePIN的一个本质原因。我自己加入了很多互联网标准的制定工作组,关于Web3.0未来的互联网技术栈也有过很多讨论,其中最基础、最底层的还是P2P communication等等。所以DePIN对Web3是个刚需,只有把基础设施交还给用户本身,才能够建立一个以用户为中心的互联网。 第二点,MetaBlox为什么要做DeWi即去中心化无线网络这个赛道呢?这里有着现实的考量。目前,无线网络上网只有两种方式,一是手机上网,二是WiFi上网,而手机上网是整个互联网的基础。上网的核心要求是安全、加密,同时可以自由漫游,手机网络和WiFi网络都可以实现,它们都是用安全证书来登录的,但区别在于手机网络是付费的,而WiFi网络是免费的,这也是为什么现在全球74%的手机网络流量走的是WiFi,而付费的手机网络运营商也有相应的资金建设基础设施后台来处理证书登录。 免费的WiFi网络怎么实现这一点呢?只能通过DePIN,这也是MetaBlox能够成为WiFi联盟和WBA(无线宽带联盟)全球九个Certified OpenRoamingTM ID Provider之一的原因,因为我们代表了WiFi联盟实现WiFi漫游的方向。WiFi是免费的,要做到和手机网络同等水平的漫游和安全,就必须借助社区力量来构建一个去中心化的身份网络。因此,DePIN对于WiFi行业是个刚需,它的全球构建是需要通过DePIN来实现的。 总得来说,我们认为DePIN是Web3的基础,也是WiFi领域的一个刚需,这就是我们做MetaBlox的原因。 彭昭(主持人):我看到新闻说MetaBlox实现了百万mPoints发行与2000节点部署,这里的mPoint指的是什么? Yan:这个问题问得很好。MetaBlox的代币经济学和万向区块链的三代币经济学其实是有异曲同工之妙,mPoint相当于点卡,通过staking产生股权币,同时还有NFT,代表矿机。我们的测试网从今年3月到5月底开始陆续测试并正式上线,目前每个月的节点数翻倍,10月是1000个节点,今天已经有2000多个节点了,增长速度非常快。 mPoint就是我们用来激励早期社区参与者的,mPoints通过staking产生股权币MBLX,目前社区已经产生了100万个mPoints。MBLX预计明年一季度正式上线,目前全球50多个国家的矿工正在参与我们的生态建设。 彭昭(主持人):这2000个节点中的每一个都相当于一个WiFi通讯设备,可以这么理解吗? Yan:不一定是一个WiFi的网络节点,也可以支持无线接入点。目前全球支持MetaBlox协议的节点有300万个,这些是WiFi联盟已经部署下去的节点,用户可以在这300万个节点中自由漫游,但不能挖矿。刚刚说的2000个节点是挖矿节点,它们是由社区共建的。我们和WBA约定是希望未来全球OpenRoamingTM的网络中有20%的节点是由社区推动的,也就是说当节点达到500万个时,其中有100万是由无线网驱动的方法建立的。 彭昭(主持人):下面请EMC的Zed来介绍一下。 Zed:EMC主要是为AI服务的,所以我们会关注AI多一些。我们把针对GPU的算力分为三种:训练算力、推理算力、渲染算力。 EMC通过自己的路由协议与底层的传输协议,把这些GPU聚合在一起。很多人认为把去中心化算力运用到AI似乎是不可行的,因为大语言模型对显存和数据量的要求很高,大多数使用的是英伟达的GPU,而英伟达GPU最核心的价值是NVLink和HBM高速显存。从这方面来讲,目前我的确看不到去中心化的节点如何去跑一个大模型训练的可能,在这种情况下,多半是把一些节点的集群合在一起,通过NVLink达到每秒900G的传输速率。但这样的集群也可以成为EMC网络上的一个节点,同时,我们把个人零散的GPU与一些中心化节点结合在一起,组成了一个去中心化网络,这是目前已经做到的。 第二个应用场景是跑推理。我个人判断明年年中左右,大语言模型的训练可能会相对冷下来,因为特别烧钱。中国现在最大的大语言模型MiniMax的算力需求是1万张H100,我们现在最大的一个节点上有200台,大约1600张H100,总投资是多少呢?将近7亿人民币,这不是小公司能玩得起的,而且这样大算力的租用成本也非常高,所以大语言模型公司能否长期持续进行这样的投入,我表示质疑。要保持长期训练,必须产生经济收益,就像GPT和Midjourney虽然花了很多钱训练,但它们有2C服务,可以产生商业变现,那就可以持续投入。所以我个人预估,明年对AI来说可能是推理的大年。 一旦进入推理服务,对大的集群的需求就会降低,去中心化的方式反而非常合适。前不久有家做图片训练的爱沙尼亚公司租用了EMC网络一个区域中的8个去中心化节点,部署花了两天,然后用一天时间跑完了100万张图片的训练,相当于仅用了三天时间就跑完了原本三个月的工作量,成本也低了很多。同时EMC也不用为此付费,而是通过DePIN的方式给予节点奖励,这就实现了双赢:使用方很满意,节点本身也能够产生收益并变现。同时我们正在和一些上市公司以及有意在GPU方面做资产布局的公司合作,合作的规模都很大,因为投入这样的节点建设基本要一两千万美金起步。 现在做AI主要考虑三点:模型、数据、算力。模型通常是不成问题的,可以在开源的模型上进行调整,也可以自研;做某个行业的AI训练的话,数据集也不会缺,所以算力就是唯一的问题,没有足够的算力,做什么AI都是天方夜谭。但算力不是想投入就能投入的,英伟达H100的订单已经排到18个月后了,有钱也买不到;即使能买到,还需要建大规模的IDC、服务环境,投入也极高。对这些AI公司来说,时间就是成本,EMC能让他们直接使用起来,且成本仅仅是自建或是传统云服务厂商的25%~30%,这其中的经济效益是非常可观的。 第三是数据。EMC从建初始节点的时候,就与其他存储项目合作并打通,现在EMC网络中的Lora、checkpoint、LLM模型,以及用户直接产生的数据,都是采用去中心化方式存储的,目前我们正在进行第二阶段的合作,第一阶段已完成模型调用,实现了去中心化存储。 这里多说几句,我认为存储并不是一个大赛道,目前还为时过早,因为存储空间里的大多数文件都是从Web2世界来的,但Web2世界里有价值的数据都已经被巨头垄断了,他们不会因为去中心化存储的成本比云存储低,就把数据迁移过来,他们更多考虑的是数据价值以及迁移和运维的成本。而AI数据都是原生数据,这些原生数据可以在最开始就存储在去中心化网络中,这比迁移原来的数据要容易得多,且这部分数据并不以其大小作为价值,而是以数据本身作为价值。举个最简单的例子,私钥最大只占十几K字节,但价值是巨大的。AI模型训练出来的数据集中,跑一个GAN或是CNN可能不算海量数据,但这些数据的价值是巨大的。 在第二阶段的合作中,EMC要求的不仅仅是存储,还有全球CDN的加速,AI模型动辄几个G甚至几十G,没有大量CDN的加速,就无法实现大量数据的相互调用,传统互联网节点之间的相互传输就会成为一个瓶颈。 如果数据已经实现了去中心化存储,下一步就是怎样利用AI去使用这些数据。我相信在座各位都会使用ChatGPT,但我自己宁愿去使用EMC节点上部署的大语言模型,为什么呢?因为我用的时间越长,它就变得越聪明,经过我的大量训练,它开始学会用我所引导的思维方式和我对话了,但这部分数据不在我手上,我就不放心,我训练出来的结果可能都跑到OpenAI或是微软这样的公司名下了。 我有这样的担心,相信其他人也会有这样的担心,所以EMC有个“算力插座”,我们希望训练出来的数据集是由用户的私钥来调动的,它是切片的,加密地存在整个网络中,归用户个人所有,这样你才敢放心地使用AI,否则AI的效果越好,可能你就会越担心。 总而言之,我们之所以做EMC,就是因为看到了AI和Web3的结合点。AI是一个典型的生产力工具,它的速度和学习能力比人强得多。区块链的底层是个制度,能够分权和去垄断,它牺牲了效率,但带来了一个更安全的环境,这两者听起来是矛盾的,但考虑到AI已经是个战略级的武器了,是国策的竞争,那么当这匹马跑得越来越快的时候,缰绳握在谁的手里就是个重要的问题。通过Web3的体制与AI结合,给它制造一个缰绳,制造一个约束的环境,制造一个更安全的环境,我觉得这两者结合是更合适的。 彭昭(主持人):我们之后会更具体地讨论DePIN和AI的结合点。现在直播间有上千位朋友,很多朋友可能是今天第一次来收看我们的直播,也是第一次接触DePIN,因此想请杜总和林总来介绍一下DePIN以及DePIN相关的一些优势和价值,并点评一下Future3 Campus的项目。 杜宇:好的,我先讲,之后再请林总补充,林总也是物联网行业的老兵了。我可能更多地从区块链行业的角度或者站在万向区块链的角度来说,为什么对DePIN这么重视和感兴趣。 一方面,万向本身是一个具有传统行业背景的公司,所以在过去这么多年中,我们在国内做了很多产业区块链的应用。在这个过程当中,我们经常会遇到的挑战是“区块链如何保证数据源头的真实性”。当我们和工业企业、设备厂商乃至整个产业中的参与者们打交道时,怎么保证数据源头的真实性?怎么与现实世界相结合?这些与当下区块链原生的那些圈子十分不同。物联网是一个很重要的手段,之前在做产业应用时,例如生物资产、工业互联网等都涉及到很多硬件的东西,所以我们很早就和林总在区块链+物联网模组的领域有合作,我们也由此看到产业中的大量需求。 第二,从比特币问世至今已有十余年,业内很多人都在讲金融服务,包括一些主流的金融机构、主流产业等,其实他们很多都看不懂Web3,认为Web3都是DeFi等看不懂的东西。但我觉得DePIN其实是把Web3带进产业的绝佳桥梁,不管是通过硬件,还是通过大家所熟知的供应链、ESG、绿色金融等,这是很重要的一点。 第三,DePIN是非中心化的基础设施,或者说是新一代的基础设施。上次我们聊到DePIN和CePIN之间的关系,我一直觉得DePIN可以很好地对CePIN进行补充。以通信为例,国内很多城市的基础设施非常好,但是在大量的发展中国家,甚至在一些发达国家中比较偏的地区,其信号覆盖其实是很差的。在这种情况下,DePIN就是对现有网络建设的良好补充。 刚才Zed也提到了,AI模型训练面临着很多的问题,其中之一便是只有训练量够大才能提升AI的质量,但在算力紧张的情况下,我们可以通过DePIN来利用更多闲置的算力,例如通过Token和经济激励的方式,把闲置的资源利用起来,这也是很好的建设网络效应的手段。例如,我们上周聊到的充电桩的案例就是DePIN提升网络效应,补充现有网络建设的方式。家用充电桩大多一天只用一次,甚至可能一周只用一两次,如果能够把充电桩共享出来将对于推动整个新能源汽车的发展有很大的帮助,所以我们看到了DePIN的巨大潜力。甚至我之前跟林总也聊过,DePIN是重建数字世界的物理基础设施的巨大机会。 彭昭(主持人):感谢杜总。提到上次充电桩的DePIN项目,我想补充一个项目进展。我们在上周的直播中帮他们找到了合作伙伴,所以希望各位嘉宾到在介绍自己的项目时,可以分享一下各自想与什么样的合作方合作等,说不定我们就能搭上这个线索。接下来有请林总进行分享。 Leo:好的,我来接着杜总刚才的分享做点补充。首先,我非常认同刚才杜总讲的“DePIN是对当前自上而下的基础设施建设的有效补充”,我认为这是在加速全人类的数字化进程。因为传统基础设施建设是自上而下、由政府或大企业来驱动的,它的投入很大,建设周期也比较长。如果能够通过社区自下而上地对基础设施的建设进行补充的话,将对数字化进程有很大的帮助。 此外,我们也看到一个商业的趋势,即如今的商业都在往数字化变革,包括现在很多的DePIN形态其实在某种程度上来说也是未来商业的发展趋势,例如充电桩、自动贩卖机、无线网关等,相当于是无人值守的商户,它们能够对外提供服务,如果有第三方使用这个服务就需要对该网络提供的服务进行付费。 这类商业模式如果按照传统的方式来做,要么自己有资金去投入,要么VC融很多钱,或是走上市等途径。而DePIN事实上是一个很有意思的创新,他把这些商业行为、资产状态都通过数字化的手段,实时地、透明地登记到全球公开透明的账本——区块链上,让所有来参与建设的建设者、投资者都可以非常清楚地看到自己和共建者对网络建设的贡献,这些都是非常公允、透明地呈现在账本上面的,这样就使得激励的分配和未来网络的收益都是公允、透明的。 因此,我们可以看到DePIN的一个项目能够调动全球几十万甚至上百万的社区中的个体进行大规模的协同,这些社区的贡献者之间虽然没有雇佣关系,但是大家可以一起奔着同样一个目标去做协同,我们觉得这种方式是非常有意义的,也极有可能是未来数字化程度比较高的情况下,商业存在的一个新形态。 大家都提到了在DePIN模式下,数据的使用权能够归还给用户。除此之外,DePIN还有一个有价值的地方,尤其是当DePIN项目呈现为一个数据的网络时,例如DIMO是汽车出行数据的聚合网络,WeartherXM是全球气象数据的聚合网络,Arkreen是能源数据的聚合网络……这些数据网络通过DePIN可以实现,但却是传统的数字化比较难触达的长尾市场。因为传统自上而下去做数字化时会看ROI,希望投入能够最大化地得到回报。因此,有很多数字化项目都会挑比较大的标的、比较大的资产,因为无论是人力的投入还是资源的投入,资源集中后,如果资产标的比较大,它就能够有比较可观的ROI。但如果资产是比较分散的,它的投入就会支撑不了,或者说它的收入覆盖不了这些投入,这个市场它就没法去触达。事实上在数字化的进程当中,有不少这样的长尾市场是没办法用传统的模式去触达的。 这就是今天DePIN的模式,即利用全球社区自下而上进行建设,并由社区的builder来承担Capex的资本投入、Opex的运营支出,从而能够有机会把长尾的市场开发出来,这是DePIN模式对于去聚合数据资产的特别好的一个手段。我就先补充这两点。 彭昭(主持人):刚才杜总和林总把DePIN的价值和优势都提炼得很明确。相比中心化的基础设施,DePIN是一种去中心化的、分布式的基础设施,能够通过使参与者获得相关的收益来充分调动其动力,进而推动基础设施的建设。它是一种自下而上的变革,这与以前大资本投入,大人力、物力投入的建设方式完全不一样。 现在有很多项目实际上都是和AI相关的,所以我们今天想深入讨论AI与DePIN的结合。这两个技术都处在非常火爆上升的阶段,DePIN和AI的结合会发生在什么样的交叉点上?先请杜总和林总来说说关于DePIN和AI结合的整体性看法,然后再请项目代表们来具体说说各自是如何看待DePIN和AI的结合的? Leo:我认为可能会有如下几个结合的点。一个是大家先前也提到过的,AI大模型是需要大量的数据来训练,当下的格局其实会出现具备大模型算力的一方,也会存在具备海量数据的一方,双方之间有可能会存在博弈。例如,有数据的一方会有可能被有算力的一方切断资源导致算力不足,而有数据的一样也有可能切断数据供应,让有算力的一方无法继续训练资源。这是中心化的算力平台或数据平台在未来可能会产生的博弈。如果要打破博弈,那就意味着需要有无需许可的、去中心化的资源网络去支撑大模型的算力平台。数据是训练大模型的重要资源,我们需要探索的是未来能否以去中心化的方式获取数据的来源,并由数据的使用者自行来决定是否开放给平台用于训练。 第二个是能源,因为大模型的计算是一个非常大能耗的场景。如果大模型未来要持续地发展,就需要有持续的、可靠的能源供应,包括绿色能源供应、低成本能源供应等,这也是支撑大模型持续发展的重要资源。我认为,“如何得到无需许可的能源”是第二个对AI来说很重要的底层基础设施。 此外,AI未来的能力一定是依托在连接之上的,如何构建一个去中心化的、无需许可的网络也是我们需要思考的。因此,我认为DePIN与AI有非常强的互相依赖的关系。未来,AI需要有基于DePIN模式构建的无需许可即可访问的基础设施,包括能源基建、数据基建、连接基建。我觉得这些可能是DePIN未来网络的重要价值所在,或者说是会有很大的市场需求的。未来,大模型可能非常依赖于DePIN网络的这些资源的供应。 另一方面,我觉得刚才Rock提到的边缘计算也是一个结合方向。因为如今的大模型已经把互联网上所有能够爬到的数据基本上都爬完了。此后的新训练就需要优化数据来源,例如各种各样的传感器就是新的数据来源。未来,我们完全可以将部分数据的预处理和部分的AI计算分配到边缘,因为现在有些边缘计算的能力也越来越强,这是第二个我们认为DePIN和AI可以有很好结合的方向。 彭昭(主持人):这两点都是很关键的结合点,AI的发展也需要嫁接在一个良性发展的基础设施网络上,DePIN和AI这个结合是挺关键的。 杜宇:我想从两个角度做一些补充。第一,我觉得DePIN本质上是个基础设施,特别站在Web3的角度来看,它不是一个应用,而是基础设施。今天参加Future3 Talk的4个项目以及林总的Arkreen,分别代表了数字经济新基建的各个方向,包括计算存储、存储算力、网络、能源等,这些都是我们可以用Web3来重新做一遍的。数字经济除了给人用以外,还有服务于AI的。因此,DePIN可以说是未来AI的基础设施。这个其实大家刚刚已经讲了很多了,我就不去展开了。 第二,其实是和激励相关的,因为Web3核心的技术是区块链,区块链的核心是一个账本。因此,未来AI不管是数据维度还是AI算法维度,互相之间的经济行为一定是记载在区块链账本上的,包括如今Web3领域中提到很多的DeFi、智能合约衍生的DeFi协议、SocialFi协议等,都是构建以AI驱动的经济体的重要金融基础设施。综上,我觉得DePIN与AI的结合在于这两点,第一个是物理世界的基础设施,第二个是AI的金融基础设施。 彭昭(主持人):这两个视角也挺关键的。刚才杜总和林总都提到了DePIN和AI的结合点。接下来请各个项目代表结合自己的时间来谈谈DePIN和AI的结合。从Rock先开始吧。 Rock:我就举一个例子,以手机硬件为例。手机上有很多的视频和图片,这些都是很珍贵的数据集。但是用户又不想把这些资料上传到云端,因为有泄露隐私的风险。因此,我们就可以用联邦学习来链接这些用户设备上的数据,通过隐私计算来保证这些数据不离开用户本机,但是可以用于训练贡献梯度,即在本地完成训练贡献梯度,然后再到集成器里加权平均后经过几轮迭代使算法收敛。这样一来,手机厂商就可以利用这些训练好的模型去增强手机上的一些功能。例如,未来手机上的相机就可能会自带一些美图或者是物体消除AI调整照片的功能,即在手机本地就可以实现,不需要联网。这对于手机厂商来说,既提升了手机市场竞争力,又不用担心用云端算力增加成本的问题,是一个很值得发力做的方向。 对用户来说是手机性能上的提升,体验上的增强,也会便于手机厂商出货。他们会卷这些软件的AI算法去赋能他们手机,同时也会卷硬件,然后把他们的手机里安上性能更强的芯片来使手机具有本地推理和计算能力,从而更快更好的完成AI算法的训练和推理。这是手机行业上的一个应用,那么对应的电动汽车,智慧城市,健康医疗等AIoT涉及的领域还有很多用例,我就先不展开讲了。 彭昭(主持人):如果想到新的观点什么的,随时可以参与讨论。接下来请Yan进行分享。 Yan:我们昨天还在和一位上市公司的朋友讨论边缘AI与网络的结合。我们团队是英伟达的合作伙伴项目,所以我知道H100、H200显卡有多贵。但是就像Rock说的,现在在场景中有很多在边缘侧的算力服务需求,我们在做MetaBlox路由器的时候就考虑到了这样的需求。但这当中也有很多挑战,比如现在专业的编辑端的板卡和专业的WiFi板卡,它之间可以实现功能上互通,但性能并不是完美地匹配,需求却是非常高的。我给大家可以举个参考数据,例如现在大量的家用摄像头背后的边缘侧的处理就是一个很大的市场,也是一个非常好的现金流的生意,所以这些都是非常适合用DePIN与AI结合来做的。我觉得这是一个很好、很强的商业模式,Web2已经形成了很多正向的现金流的案例,那么Web3只会把这个趋势越做越宽,越做越大,希望大家一起努力。 彭昭(主持人):Zed刚才也提到,如果用GPT,可能会担心自己的数据并不能存在自己这里,但如果使用EMC的大模型,就能够保证自己数据的安全性,是这样吧? Zed:我就简单发散一下。我觉得还有件很重要的事:公平。去年年底GPT出来之后,大家都想去赶上AI这班快车,这其实是件好事,因为在AI这个行业里,大家的差距并没有那么大。Web2的创业是非常难的,流量垄断一切,但AI赛道的机会还有很多,很多人切入赛道比较早,做一些AIGC的应用,还是能获取一些红利。 但是很快红利就没有了,现在就开始卷得不得了。不但是大模型卷,应用也卷,卷到最后大家都在为英伟达和OpenAI打工——无非是你把他们的算力和模型拿来使用或者出租、出售,这其实不利于AI行业的发展。做AI创业,租用算力的成本很高,而且还不一定租得到,因为你不敢签长期协议。这是从AI创业者的角度来说。 第二是GPU芯片的生产厂家。一些国产厂商最新的GPU都会寄给我们做测试,通过去跑各种各样的环境,得到一个比较公平的数据。实话实说,差距还是挺大的,这个差距并不是硬件层面的,更多是软件层面的。硬件的制式可以做到7纳米或者更低,但实际上一跑起来就会发现,所谓CUDA兼容和原生CUDA还是两码事,所有应用都需要重新编译一遍,几乎不敢拿去让别人使用。这样的话,你的市场要怎么打开?但投硬件的话,成本又非常高,所以我们看到很多企业最终为了保险起见,还是会去购买英伟达。 但反过来说,是不是那些企业就没有竞争力呢?肯定不是的。如果通过DePIN的方式并入进来,跑一些小模型训练和推理服务,可能会发现性价比还是挺高的。EMC网络是按AI任务完成度计费的,虽然可能性能上有40%-50%的差距,但成本只有20%,这样使用起来性价比还是挺高的,而且任务也可以随意调度,不用在前期投入那么多资金去买硬件。 从这两个层面来讲,DePIN结合Web3的经济模型为用户和企业创造了一个更加公平的环境,再结合RWA,变现渠道就更简单一些。Web2的商业模式就是吸引更多用户,然后让用户付费,Web3有更高级的玩法。大家都知道金融化,金融不是洪水猛兽,如果结合一些金融产品的设计,可以让赛道里的一些创业者和企业更快地获得收益,那么他们就会有持续不断的资金来投入,这是加速行业发展的一件好事。 彭昭(主持人):接下来原本还有一个硬核的话题,就是RWA和DePIN的结合,但RWA也是一个新的叙事,门槛比较高,需要讨论很长时间,考虑到我们的时间比较紧,接下来不如趁着直播间有这么多朋友在线,我们每个项目聊一聊想和什么样的项目合作,找找合作的机会。 Zed:我谈一些真实需求,特别有趣。现在其实不缺客户,去中心化存储也没问题,就是数据传输太慢。上次我们想跑一个训练,把香港、新加坡、美国的IDC都问了个遍,最后发现最简单的办法就是买张机票,然后带着硬盘过去拷,否则这么大的数据量,根本不可能做到高速传输。我觉得数据传输对AI的发展是个极大的刚需,存储这方面我不是专家,海量数据调来调去,我也想不到什么特别好的办法,Rock和Ben在这方面应该都比较专业。 Rock:边缘设备,你直接在有数据的地方训练就会快很多。我也和其他行业交流过,他们宁可用卡车来传硬盘。 Zed:真的是这样,我一开始只是当作笑谈,但后来算了一下,好像这个方式确实是最可行的。说到边缘化的方式,小模型推理都没问题,速度已经非常快了,但对一些中大模型来说,要用DePIN的方式做到效率最高,就是要把闲置的加以使用,但并不是说离你最近的那个地方一定会闲置,算法做不到这一步,算法只能做到“你是最合适的,所以我往那儿去”,但做不到“我需要你,你就在哪儿”。 还有隐私计算,这部分我们也很早就在做了,未来大家担心的不仅是数据归谁所有的问题,还有数据会不会被滥用和盗取的问题。虽然目前还没有涉及个人数据的安全性问题,但很快就会提上日程,特别是对一些非常有价值的数据,当它的数据量不是特别大的时候,它的切片、加密等方式也是我们最近刚刚涉及的问题,这方面我研究得不是特别透,也想听听大家的建议。 Rock:可信计算是大趋势,有个核心的概念叫TEE(可信执行环境),这个很重要。未来的大趋势是在边缘设备上加TEE芯片,支持大家做可信计算。可信计算的核心之一是在CPU内做数据的加解密,数据即便是在RAM里,也是加密的,只有进到CPU里才进行加解密的动作,这就是TEE。所以未来TEE的CPU也是一个趋势,各个制造厂商都会加TEE的芯片,来解决数据隐私性的问题。我先补充这一点。 Zed:那天我们也提到了这点,但去跑数据之前它还是需要解密的。如果有更好的方式的话,我觉得未来会是个大有可为的垂直赛道。 杜宇:我补充一点,TEE还是有一些缺陷,需要先解密再去算,最新的方向一定是全同态。两个月前我见过一个在欧洲做全同态的团队,他们在用硬件的方式加速全同态的计算,说今天的全同态可能和两三年前的zk情况差不多。其实即使是今天的zk,也还没有做到完全可用,在速度、性能方面还存在问题,但全同态一定是最成熟、最完备的解决方法,虽然距离实现还有很大差距,对硬件的要求也非常高,特别是大模型训练,可能真的要等量子计算成熟了才有可能性。 彭昭(主持人):直播间有朋友想问下Zed,如果想和EMC项目合作,无论是作为builder、用户还是投资人,应该怎样来切入? Zed:EMC除了做DePIN外,还有EMC Hub。我相信做AI的一定知道Hugging Face和C站。Hugging Face和C站今年特别火,Github也是开发者非常熟悉的平台,但它们中间都是断层的。做过AI的可能都知道,在刚开始接触AI的时候,绝大多数精力并不是放在开发上面,而是去配置环境,这就特别浪费时间。整个社会分工已经很明晰了,为什么要反复造轮子呢? 所以我们当时就觉得可以在基础设施上加一个应用层,相当于把Github和AWS进行结合,做了EMC Hub。EMC Hub是一个类似于Hugging Face的模型聚合市场,基于Web3的经济系统让大家来贡献内容,你所贡献出来的内容是归自己所有的,如果别人去使用或是进行了商业化,你也可以从中获得收益。有赖于整个算力网络的支持,代码可以作为一个服务直接部署在网络上,就是“代码即服务”,算力提供者、开发人员甚至AI爱好者都可以把自己开发或微调出来的模型部署在上面当作服务,并获得收益。用声纹识别举例,其实开发难度并不大,有很多开源代码,只需要微调一下即可当作服务卖给很多有需要的企业。现在去做一个2C产品是很难的,但你如果把自己的API服务部署在EMC Hub上并收取费用,很快就能够变现,这就打开了很多新的创业空间。 彭昭(主持人):很清晰,大家应该也都知道怎样和EMC合作了,Rock和Yan也可以说一下。 Rock:我也说一下需求。我们base在硅谷,对于AI行业来说,这里的大厂也已经垄断了算力资源、一流的人才和数据集,我们这种创业公司的生存空间是很有限。我们目前的需求主要是人才,硅谷的算法工程师工资每年动辄20-30万刀起,我这次回国发现国内的算法人才也很多,特别是一些高校的同学们非常有天赋,能把业界前沿的论文快速消化吸收并且快速代码化的能力非常强。我们把AI搬到边缘上去需要三项最核心的技术:Efficient AI即模型的压缩优化、Federated Learning 联邦学习,以及刚才提到的Confidential Compute隐私计算,有对这三项技术感兴趣或是在这三个方向上有所积累的小伙伴和同学们请到Network3.ai上联系我们。 另外一个需求就是合作伙伴。如果有IoT厂商想尝试在边缘设备上训练模型赋能自己产品的,请联系我们,我们可以一起做个Pilot program。Web2的APP开发者如果不想去自己搭一套AIinfra,但是也想快速训练出自己app里的垂直模型的,也可以联系我们。谢谢! 彭昭(主持人):对刚刚说的这几个方向感兴趣的小伙伴可以给我们的视频号小助手留言,我们会有相关的同事来联系。接下来请Yan和Ben说一说。 Yan:我一直在关注视频号的互动,看到有网友问有没有社群的合作,我们是热烈欢迎社群合作的。现在几乎家家户户都有WiFi,现在既然要升级到WiFi6,同样的价格,为什么不换一个可以支持OpenRoamingTM的WiFi6 AX 6000设备呢?所以现在国内国外的需求都很旺盛,我们也非常欢迎社群合作,希望大家可以一起把OpenRoamingTM技术遍布到各家各户。有社群的朋友们欢迎跟我们联系,这是第一点。 第二,WiFi是一个难得的、每家每户、每个商店都需要的入口设备,伴随着WiFi6的换机潮,这些入口设备会是一个流量入口。拿小米举例,小米一般只做四个设备,手机、路由器、电视和汽车,其他都是生态链伙伴来做。我们也是希望聚焦入口设备,把兼容性做到最好。我们的WiFi路由器可以对接1-2T的SSD,设备都支持TrustZone,我本人在这个领域也有相当多专利,特别希望和存储、CDN等项目方合作,我们一起把DePIN部署下去。 第三,我们也希望与AI项目方开展深度合作。刚刚也提到我们团队是英伟达的合作伙伴项目,我们购买的所有机器都要支持SGX环境。但也有很多项目是用一个完整的机器作为可信执行环境,这也预示着隐私AI将是大势所趋。我个人特别看重边缘计算的隐私AI,早期各个小区施行人脸门禁的时候,大家都很担心自己的人脸信息被盗用,现在通过TEE环境可以确保即使黑客黑到设备里面成为root,也拿不走你的人脸信息。今后随着GPT等的发展,这个方向一定是大势所趋。MetaBlox虽然是WiFi网络,但因为我们是核心的入口设备,我们也支持边缘计算网络,希望可以和大家共建去中心化的隐私保护的边缘计算网络。 Ben:首先我们非常欢迎对IPFS技术有深入研究的开发者和我们一起去完善IPDN这个产品。同时,如果有开发者对去中心化存储有需求,比如你想构建一个dApp,用去中心化的CDN做数据、文件的存储,可以和我们联系,我们一起合作。 彭昭(主持人):我们的活动现在也接近尾声,接下来请杜总和林总每人做个一分钟的总结吧。 Leo:我也打个小广告。几周前香港金融科技周期间,我在Future3 Campus DePIN加速营的开营仪式上也讲到了DePIN应用链的启动,希望对DePIN赛道感兴趣的开发者和创业的团队和我们多多交流,看看DePIN应用链及其赋能能力能否支撑大家更快速地开发出DePIN产品的原型,也一起努力把DePIN赛道做得越来越热。 彭昭(主持人):DePIN应用链是个特别有价值的事情,很可惜今天的直播内容没涵盖这个话题,下次活动一定要包含进来。最后请杜总来总结。 杜宇:我个人感觉到今天为止,我们在DePIN方向上的探索还处于非常早期的阶段。今天我们主要讨论的是基础设施类别,上周是应用类,目前为止还没有看到整个DePIN生态完全的大爆发,我们今天和在场的几位行业先驱们一起在DePIN赛道做了更多的探索,希望能有更多示范性的案例出来给大家新的启发。 在全球范围内来说,我们的大湾区有着非常好的DePIN基础,但凡涉及到硬件都离不开大湾区,离不开深圳,这也是我们华人在整个Web3和DePIN赛道的巨大优势。我们希望能和从事物联网、硬件等行业的优秀企业家有更多交流,大家一起探讨如何将Web3与硬件、物联网相结合,探索出一片新的增长区域,我觉得这会是一件非常有意思的事。 彭昭(主持人):我也感觉随着讨论的深入,关注DePIN的朋友们的热情和数量都有了明显的提升,也期待下次和大家继续交流DePIN这个话题。我们今天的活动就到这里,谢谢各位。 来源:金色财经
lg
...
金色财经
2023-12-07
Footprint Analytics x Future3 Campus联合发布AI与Web3研究报告
go
lg
...
技术的应用栈的参考架构有以下几种:
Prompt
Engineering 图 8:
Prompt
Engineering 当前,大多数从业者在构建应用时采用基础解决方案,即
Prompt
Engineering。这一方法通过设计特定的
Prompt
来改变模型的输入,以满足特定应用的需求,是最方便快捷的做法。然而,基础的
Prompt
Engineering 存在一些限制,如数据库更新不及时、内容冗杂、以及对输入上下文长度(In-Context Length)的支持和多轮问答的限制。 因此,行业内也在研究更先进的改进方案,包括嵌入(Embedding)和微调(Fine-tuning)。 嵌入(Embedding) 嵌入(Embedding)是一种广泛应用于人工智能领域的数据表示方法,能高效捕获对象的语义信息。通过将对象属性映射成向量形式,嵌入技术能够通过分析向量之间的相互关系,快速找到最有可能正确的答案。嵌入可以在 LLM 的基础上构建,以利用该模型在广泛语料上学到的丰富语言知识。通过嵌入技术将特定任务或领域的信息引入到预训练的大模型中,使得模型更专业化,更适应特定任务,同时保留了基础模型的通用性。 用通俗的话来讲,嵌入就类似于你给一个经过综合训练的大学生一本工具书,让他拿着拥有特定任务相关知识的工具书去完成任务,他可以随时查阅工具书,然后可以解决特定的问题。 微调(Fine-tuning) 图 9:Fine Tuning 微调(Fine-tuning)与嵌入不同,通过更新已经预训练的语言模型的参数,使其适应特定任务。这种方法允许模型在特定任务上表现出更好的性能,同时保持通用性。微调的核心思想是调整模型参数,捕捉与目标任务相关的特定模式和关系。但微调的模型通用能力上限仍然受限于基座模型本身。 用通俗的话来讲,微调就类似于给经过综合训练的大学生上专业知识课程,让他掌握除了综合能力以外的专业课知识,能自行解决专业板块的问题。 重新训练 LLM 当前的 LLM 虽然强大,但不一定能够满足所有需求。重新训练 LLM 是一种高度定制化的解决方案,通过引入新数据集和调整模型权重,使其更适应特定任务、需求或领域。然而,这种方法需要大量计算资源和数据,并且管理和维护重新训练后的模型也是挑战之一。 Agent 模型 图 10:Agent 模型 Agent 模型是一种构建智能代理的方法,它以 LLM 作为核心控制器。这个系统还包括几个关键组成部分,以提供更全面的智能。 Planning,规划:将大任务分成小任务,这样更容易完成 Memory,反思:通过反思过去的行为,改进未来的计划 Tools,工具使用:代理可以调用外部工具获取更多信息,如调用搜索引擎、计算器等 人工智能代理模型具备强大的语言理解和生成能力,能够解决通用问题,进行任务分解以及自我反思。这使得它在各种应用中都有广泛的潜力。然而,代理模型也存在一些局限性,例如受到上下文长度的限制、长期规划和任务拆分容易出错、输出内容的可靠性不稳定等问题。这些局限性需要长期不断的研究和创新,以进一步拓展代理模型在不同领域的应用。 以上的各种技术并不是相互排斥的,它们可以在训练和增强同一个模型的过程中一起使用。开发者可以充分发挥现有大语言模型的潜力,尝试不同的方法,以满足日益复杂的应用需求。这种综合使用不仅有助于提高模型的性能,还有助于推动 Web3 技术的快速创新和进步。 然而,我们认为,虽然现有的 LLM 已经在 Web3 的快速发展中发挥了重要作用,但在充分尝试这些现有模型(如 OpenAI、Llama 2 以及其他开源 LLM)之前,我们可以从浅入深,从
prompt
engineering 和嵌入等 RAG 策略入手,谨慎考虑微调和重新训练基础模型。 3.4 LLM 如何加速区块链数据生产的各个流程 3.4.1 区块链数据的一般处理流程 当今,区块链领域的建设者逐渐认识到数据产品的价值。这一价值覆盖了产品运营监控、预测模型、推荐系统以及数据驱动的应用程序等多个领域。尽管这一认知逐渐增强,但作为数据获取到数据应用中不可或缺的关键步骤,数据处理往往被忽视。 图 12:区块链数据处理流程 将区块链原始非结构化数据,如 events 或 logs 等,转换为结构化的数据 区块链上的每一笔交易或事件都会生成 events 或 logs,这些数据通常是非结构化的。这一步骤是获取数据的第一入口,但数据仍然需要被进一步处理以提取有用信息,得到结构化的原始数据。这包括整理数据、处理异常情况和转化为通用格式。 将结构化的原始数据,转换为具有业务意义的抽象表 在得到结构化原始数据后,需要进一步进行业务抽象,将数据映射到业务实体和指标上,比如交易量、用户量等业务指标,将原始数据转化为对业务和决策有意义的数据。 从抽象表中,计算提取业务指标 有了抽象的业务数据后,可以在业务抽象的数据上进行进一步计算,就可以得出各种重要的衍生指标。例如交易总额的月增长率、用户留存率等核心指标。这些指标可以借助 SQL、Python 等工具实现,更加有可能帮助监控业务健康、了解用户行为和趋势,从而支持决策和战略规划。 3.4.2 区块链数据生成流程加入 LLM 后的优化 LLM 在区块链数据处理中可以解决多个问题,包括但不限于以下内容: 处理非结构化数据: 从交易日志和事件中提取结构化信息:LLM 可以分析区块链的交易日志和事件,提取其中的关键信息,如交易金额、交易方地址、时间戳等,将非结构化数据转化为的带有业务意义的数据,使其更易于分析和理解。 清洗数据,识别异常数据:LLM 可以自动识别和清洗不一致或异常的数据,帮助确保数据的准确性和一致性,从而提高数据质量。 进行业务抽象: 将原始链上数据映射到业务实体:LLM 可以将原始区块链数据映射到业务实体,例如将区块链地址映射到实际用户或资产,从而使业务处理更加直观和有效。 处理非结构化链上内容,打标签:LLM 可以分析非结构化数据,如 Twitter 情感分析结果,将其标记为正面、负面或中性情感,从而帮助用户更好地理解社交媒体上的情感倾向。 自然语言解读数据: 计算核心指标:基于业务抽象,LLM 可以计算核心业务指标,如用户交易量、资产价值、市场份额等,以帮助用户更好地了解其业务的关键性能。 查询数据:LLM 可以通过 AIGC,理解用户意图,生成 SQL 查询,使用户能够以自然语言提出查询请求,而不必编写复杂的 SQL 查询语句。这增加了数据库查询的可访问性。 指标选择、排序和相关性分析:LLM 可以帮助用户选择、排序和分析不同的多个指标,以更好地理解它们之间的关系和相关性,从而支持更深入的数据分析和决策制定。 产生业务抽象的自然语言描述:LLM 可以根据事实数据,生成自然语言摘要或解释,以帮助用户更好地理解业务抽象和数据指标,提高可解释性,并使决策更具合理性。 3.5 目前用例 根据 LLM 自身的技术以及产品体验优势,它可以被应用到不同的链上数据场景,技术上从易到难可以将这些场景分成四类: 数据转换:进行数据增强、重构等操作,如文本摘要、分类、信息抽取。这类应用开发较快,但更适合通用场景,不太适合大量数据的简单批量化处理。 自然语言接口:将 LLM 连接知识库或工具,实现问答或基本工具使用的自动化。这可以用于构建专业聊天机器人,但其实际价值受其所连接的知识库质量等其他因素影响。 工作流自动化:使用 LLM 实现业务流程的标准化和自动化。这可以应用于较复杂的区块链数据处理流程,如解构智能合约运行过程、风险识别等。 协助机器人与助手辅助系统:辅助系统是在自然语言接口的基础上,集成更多数据源和功能的增强系统,大幅提高用户工作效率。 图 11:LLM 应用场景 3.6 LLM 的局限性 3.6.1 行业现状:成熟应用、正在攻克的问题以及尚未解决的挑战 在 Web3 数据领域,尽管已经取得了一些重要的进展,但仍然面临一些挑战。 相对成熟的应用: 使用 LLM 进行信息处理:LLM 等 AI 技术已成功用于生成文本摘要、总结、解释等工作,帮助用户从长篇文章、专业报告中提取关键信息,提高了数据的可读性和可理解性。 使用 AI 解决开发问题:LLM 已经应用于解决开发过程中的问题,例如替代StackOverflow 或搜索引擎,为开发者提供问题解答和编程支持。 有待解决与正在探索的问题: 利用 LLM 生成代码:行业正在努力将 LLM 技术应用于自然语言到 SQL 查询语言的转换,以提高数据库查询的自动化和可理解性。然而,过程中会有很多困难,比如在某些情境下,生成的代码要求极高的准确性,语法必须百分之百正确,以确保程序能够无 bug 运行,并获得正确的结果。难点还包括确保问题回答的成功率、正确率,以及对业务的深刻理解。 数据标注问题:数据标注对于机器学习和深度学习模型的训练至关重要,但在 Web3 数据领域,特别是处理匿名的区块链数据时,标注数据的复杂性较高。 准确性和幻觉(Hallucination)问题:AI 模型中幻觉的出现可能受多因素影响,包括有偏见或不足的训练数据、过度拟合、有限的上下文理解、缺乏领域知识、对抗性攻击和模型架构。研究人员和开发者需要不断改进模型的训练和校准方法,以提高生成文本的可信度和准确性。 利用数据进行业务分析和文章输出:将数据用于业务分析和生成文章仍然是一个具有挑战性的问题。问题的复杂性、需要精心设计的提示(
prompt
)、以及高质量的数据、数据量、减少幻觉问题的方法都是待解决的问题。 根据业务领域自动索引智能合同数据以进行数据抽象:自动为不同业务领域的智能合同数据建立索引以进行数据抽象仍然是一个未解决的问题。这需要综合考虑不同业务领域的特点,以及数据的多样性和复杂性。 处理时序数据,表格文档数据等更复杂的模态:DALL·E 2 等多模态模型非常擅长在文字生成图像、语音等常见模态。而在区块链以及金融领域需要特别地对待一些时序数据,而非简单地把文本向量化就能解决。联和时序数据与文本,跨模态联合训练等,是实现数据智能分析以及应用的重要研究方向。 3.6.2 为何只靠 LLM 不能完美解决区块链数据行业的问题 作为语言模型,LLM 更适用于处理对流畅度要求较高的场景,而在追求准确性方面,可能需要对模型进行更进一步的调整。在将 LLM 应用于区块链数据行业时,以下框架可提供一些参考。 图 13:区块链数据行业下 LLM 输出的流畅性、准确性和用例风险 在评估 LLM 在不同应用中的适用性时,关注流畅度和准确性是至关重要的。流畅度指的是模型的输出是否自然、通顺,准确性则表示模型的答案是否准确。这两个维度在不同应用场景中有不同的要求。 对于流畅度要求较高的任务,如自然语言生成、创意写作等,LLM 通常能够胜任,因为其在自然语言处理方面的强大性能使其能够生成流畅的文本。 区块链数据面临着数据解析、数据处理、数据应用等多方面的问题。LLM 拥有卓越的语言理解和推理能力,使其成为与区块链数据互动、整理和概括的理想工具。然而,LLM 并不能解决所有区块链数据领域的问题。 在数据处理方面,LLM 更适合快速迭代和探索性处理链上数据,不断尝试新的处理方法。然而,LLM 在生产环境中的详细核对等任务方面仍存在一些限制。典型的问题是 token 长度不够,无法应对长上下文的内容。耗时的
prompt
,回答不稳定影响下游任务进而导致成功率不稳定的问题,以及执行大批量任务的效率不高。 其次,LLM 处理内容的过程中很可能出现幻觉问题。据估计,ChatGPT 的幻觉概率约为 15% 至 20%,而由于其处理过程的不透明性,很多错误难以察觉。因此,框架的建立和专家知识的结合变得至关重要。此外,LLM 结合链上数据还是有很多挑战: 链上数据实体类型多、数量庞大,以何种形式投喂给 LLM,有效地运用在具体的商业化场景,类似其他垂直行业,需要更多研究和探索。 链上数据包括结构化和非结构化数据,目前行业大多数数据解决方案,都是基于对业务数据的理解。解析链上数据的过程中,用 ETL 去过滤,清洗,补充和复原业务逻辑,进一步把非结构化数据整理为结构化数据,可以为后期多种业务场景提供更高效的分析。比如,结构化的 DEX trades,NFT marketplace transactions,wallet address portfolio 等,就具有前面提到的高质量,高价值,准确和真实等特点,可以给通用 LLM 提供高效的补充。 被误解的 LLM LLM 可以直接处理非结构化数据,因此结构化数据将不再被需要? LLM 通常基于海量文本数据预训练而来,天然适合处理各类非结构化的文本数据。然而,各个行业已经拥有大量结构化数据,尤其 Web3 领域中解析后的数据。如何有效的利用这些数据,增强 LLM,是一个行业的热门研究课题。 对于 LLM,结构化数据仍然具有以下的优势: 海量:大量的数据储存在各种应用背后的数据库和其他标准格式里面,特别是私有数据。每个公司和行业都还有大量 LLM 没有用于预训练的墙内数据。 已有:这些数据不需要重新生产,投入成本极低,唯一的问题是怎么用起来。 高质量和高价值:领域内长期积累的,蕴含专家的专业知识,通常都沉淀到了结构化数据里面,用于产学研。结构化数据的质量是数据可用性的关键,其中包括数据的完整性、一致性、准确性、唯一性和事实性。 高效率:结构化数据以表格、数据库或其他规范格式存储,模式是预先定义的,并且在整个数据集中保持一致。这意味着数据的格式、类型和关系都是可预测和可控的,使得数据的分析和查询更加简单和可靠。而且,行业已经有成熟的 ETL 及各种数据处理和管理工具,使用起来也更加高效和便捷。LLM 可以通过 API,把这些数据使用起来。 准确性和事实性:LLM 的文本数据,基于 token 概率,目前还不能稳定的输出确切的答案,产生的幻觉问题一直是 LLM 要解决的核心根本问题。对于很多行业和场景,会形成安全和可靠性问题,比如,医疗,金融等。结构化数据,正是可以辅助和矫正LLM 这些问题的一个方向。 体现关系图谱,和特定业务逻辑:不同类型的结构化数据,可以以特定的组织形式(关系型数据库,图数据库等),输入到 LLM,解决不同类型的领域问题。结构化数据使用标准化的查询语言(如 SQL),使得对数据进行复杂的查询和分析变得更加高效和准确。知识图谱 (Knowledge Graph) 可以更好地表达实体之间的关系,也更容易进行关联查询。 使用成本低:不用 LLM 每次重新从底层重新训练整个底座模型,可以结合 Agents 和LLM API 等 LLM 赋能方式,更快更低成本的接入 LLM。 目前市场上还有一些脑洞大开的观点,认为 LLM 在处理文本信息和非结构化信息方面的能力极强,只需将原始数据,包括非结构化数据,简单导入到 LLM,就能达到目的。这个想法类似于要求通用 LLM 解数学题,在没有专门构建数学能力模型的情况下,大多数 LLM 可能会在处理简单的小学加减题时出错。反而,建立类似数学能力模型,和图像生成模型的 Crypto LLM 垂直模型,才是解决 LLM 在 Crypto 领域更落地的实践。 4.2 LLM 可以从新闻、推特等文字信息推测内容,人们不再需要链上数据分析来得出结论? LLM 虽然可以从新闻、社交媒体等文本中获得信息,但直接从链上数据中获得的洞察仍然是不可或缺的,主要原因有: 链上数据是原始的第一手资讯,而新闻和社交媒体中的信息可能存在片面性或误导性。直接分析链上数据可以减少信息偏差。尽管利用 LLM 进行文本分析存在理解偏差的风险,但直接分析链上数据可以减少误读。 链上数据包含全面的历史交互和交易记录,分析可以发现长期趋势和模式。链上数据还可以展现整个生态系统的全貌,如资金流向、各方关系等。这些宏观的洞察有助于更深入地理解状况。而新闻和社交媒体信息通常更零散且短期。 链上数据是开放的。任何人都可以验证分析结果,避免信息的不对称。而新闻和社交媒体未必都如实披露。文本信息和链上数据可以相互验证。综合两者可以形成更立体和准确的判断。 链上数据分析仍是不可或缺的。LLM 从文本中获取信息具有辅助作用,但不能取代直接分析链上数据。充分利用两者优势才能取得最佳效果。 4.3 利用 LangChain、LlamaIndex 或其他 AI 工具,在 LLM 的基础上构建区块链数据解决方案非常容易? LangChain 和 LlamaIndex 等工具为构建自定义的简单 LLM 应用提供了便利,使快速搭建成为可能。然而,将这些工具成功应用于实际生产环境中涉及到更多的挑战。构建一个高效运行、保持高质量的 LLM 应用是一项复杂的任务,需要深入理解区块链技术和 AI 工具的工作原理,并有效地将它们整合在一起。这对于区块链数据行业来说,是一项重要但具有挑战性的工作。 在这个过程中,必须认识到区块链数据的特性,它要求极高的精准性和可重复校验性。一旦数据通过 LLM 进行处理和分析,用户对其准确性和可信度有很高的期望。这与 LLM 的模糊容错性之间存在着潜在的矛盾。因此,在构建区块链数据解决方案时,必须仔细权衡这两方面的需求,以满足用户的期望。 当前市场上,虽然已经有了一些基础工具,但这个领域仍在快速演进和不断迭代。类比于 Web2 世界的发展历程,从最初的 PHP 编程语言到更成熟、可扩展的方案如 Java、Ruby、Python,以及 JavaScript 和 Node.js 等,再到 Go 和 Rust 等新兴技术,都经历了不断的演变。AI 工具也在不断变化,新兴的 GPT 框架如 AutoGPT,Microsft AutoGen,及最近OpenAI 自己推出的 ChatGPT 4.0 Turbo 的 GPTs 和 Agents 等只是展示了未来可能性的一部分。这表明,区块链数据行业和 AI 技术都还有许多发展空间,需要不断努力和创新。 当前在应用 LLM 时,有两个陷阱需要特别注意: 期望值过高:很多人认为 LLM 可以解决一切问题,但实际上 LLM 有明显的局限性。它需要大量的计算资源,训练成本高昂,而且训练过程可能不稳定。对 LLM 的能力要有现实的期望,明白它在某些场景下表现出色,如自然语言处理和文本生成,但在其他领域可能无法胜任。 忽视业务需求:另一个陷阱是强行应用 LLM 技术,而不充分考虑业务需求。在应用 LLM 之前,务必明确具体的业务需求。需要评估 LLM 是否是最佳技术选择,并做好风险评估和控制。强调 LLM 的有效应用需要根据实际情况慎重考虑,避免误用。 尽管 LLM 在许多领域都具备巨大潜力,但开发者和研究者在应用 LLM 时需要保持谨慎,采取开放的探索态度,以找到更适合的应用场景并最大程度地发挥其优势。 关于Footprint Analytics Footprint Analytics是一家区块链数据解决方案提供商。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 30 条公链生态的 NFT,GameFi 以及 钱包地址资金流追踪数据。 关于Future3 Campus Future3 Campus是由万向区块链实验室和HashKey Capital共同发起的Web3.0创新孵化平台,重点聚焦Web3.0 Massive Adoption、DePIN、AI三大赛道,以上海、粤港澳大湾区、新加坡为主要孵化基地,辐射全球Web3.0生态。同时,Future3 Campus将推出首期5000万美金的种子基金用于Web3.0项目孵化,真正服务于Web3.0领域的创新创业。 来源:金色财经
lg
...
金色财经
2023-12-06
Footprint Analytics x Future3 Campus联合发布AI与Web3研报(下篇)
go
lg
...
最典型的就是token 不足、耗时的
prompt
提示以及回答不稳定等问题。而 Footprint 所处的链上数据这一垂直领域,面临的更大挑战是链上数据实体类型多、数量庞大,变化快,以何种形式投喂给 LLM,需要整个行业更多研究和探索。目前的工具链也还相对初期,还需要更多的工具去解决一些具体问题。 未来 Footprint 在技术和产品上与 AI 的结合包括以下内容: (1)技术方面,Footprint 将结合 LLM 模型在三个方面进行探索和优化 支持 LLM 在结构化数据上进行推理,让已沉淀的大量加密领域的结构化数据以及知识,能够被应用在 LLM 的数据消费以及生产上。 帮助用户建立个性化知识库(包括知识、数据以及经验),以及使用私有数据去提升已经优化过的 crypto LLM 的能力,让每个人都能建自己的模型。 让 AI 辅助分析以及内容生产,用户可以通过对话的方式,结合资金流数据以及私有知识库,去创建自己的 GPT,去生产以及分享 crypto 投资内容。 (2)在产品方面,Footprint 将重点探索 AI 产品应用以及商业模式上的创新。根据 Footprint 近期对产品的推广计划,将推出为用户提供 AI crypto 内容生成与分享平台。 此外,对于未来合作伙伴的拓展,Footprint 将在以下两个方面进行探索: 第一,强化与跟 KOL 合作,助力有价值内容的生产以及社区的运营、知识的变现。 第二,拓展更多合作项目方以及数据提供方,打造一个开放、共赢的用户激励和数据合作,建立一个互利共赢的一站式数据服务平台。 1.3 GoPlus SecurityGoplus GoPlus Security是目前 Web3 行业领先的用户安全基础设施,提供各类面向用户的安全安全服务。目前已经被市面上主流的数字钱包、行情网站、Dex 以及其他各种 Web3 应用所集成。用户可以直接使用资产安全检测、转账授权和防钓鱼等各种安全保护功能。GoPlus所提供的用户安全解决方案可以全方位覆盖整个用户安全的生命周期,以保护用户资产免受各种类型的攻击者的威胁。 GoPlus 与 AI 的发展与规划如下: GoPlus 在 AI 技术方面主要探索体现在其 AI 自动化检测和 AI 安全助手两款产品中: (1)AI 自动化检测 GoPlus 从 2022 年开始自研基于AI技术的自动化检测引擎,来全面提升安全检测的效率以及准确率。GoPlus的安全引擎采用多层次、漏斗式的分析方法,采用了静态代码检测、动态检测以及特征或行为检测等多个环节。这一复合式检测流程使得引擎能够有效地识别并分析潜在风险样本的特征,从而对攻击类型和行为有效建模。这些模型是引擎识别和预防安全威胁的关键,它们帮助引擎判断风险样本是否具有某些特定的攻击特征。此外,GoPlus安全引擎经过长时间的迭代和优化,积累了非常丰厚的安全数据以及经验,其架构能够快速有效应对新出现的安全威胁,确保能够及时发现并阻止各种复杂和新型的攻击,全方位保护用户安全。目前该引擎在风险合约检测、钓鱼网站检测、恶意地址检测以及风险交易检测等多个安全场景均使用了AI相关的算法和技术。采用AI技术能更快速地缩短减小风险敞口,提高检测效率,降低检测成本;另一方面减少了人工参与的复杂性和时间成本,提高对风险样本判断的准确率,尤其是对于那些原本人工难以界定或引擎难以识别的新场景,通过AI可以更好地归集特征并形成更有效的分析方法。 2023 年,随着大模型的发展,GoPlus 迅速适应并采用了 LLM。与传统 AI算法相比,LLM 在数据识别、处理和分析方面的效率和效果有了显著提升。LLM 的出现帮助 GoPlus 加快了在 AI 自动化检测方面的技术探索,在动态模糊测试的方向上,GoPlus采用了LLM技术能够有效的生成交易序列,探索更深的状态来发现合约风险。 (2)AI 安全助手 GoPlus 同时正利用基于 LLM 的自然语言处理能力,开发 AI 安全助手,以提供即时的安全咨询和改善用户体验。AI 助手基于 GPT 大模型,通过前端业务数据的输入,开发了一套自研的用户安全Agent,能够根据问题自动化的去分析、生成解决方案、拆解任务、执行,为用户提供需要的安全服务。AI 助手能简化用户与安全问题之间的交流,降低用户理解的门槛。 在产品功能上,由于 AI 在安全领域的重要性,未来 AI 有潜力彻底改变现有的安全引擎或病毒杀毒引擎的结构,出现以 AI 为核心的全新引擎架构。GoPlus 将持续对 AI 模型进行训练和优化,以期将AI从辅助工具转变为其安全检测引擎的核心功能。 在商业模式上,虽然目前 GoPlus 的服务主要面向开发者和项目方,但公司正在探索更多直接面向 C 端用户的产品和服务,以及与AI相关的新收入模式。提供高效、准确、低成本的 C 端服务将是 GoPlus 未来的核心竞争力。这需要公司持续研究,在与用户交互的 AI 大模型上进行更多的训练和输出。同时,GoPlus公司也将与其他团队合作,共享其安全数据,并通过合作推动安全领域内的 AI 应用,为未来可能带来的行业变革做好准备。 1.4 Trusta Labs Trusta Labs成立于2022年,是一家由人工智能驱动的Web3领域数据创业公司。Trusta Labs专注于利用先进的人工智能技术对区块链数据进行高效处理和精准分析,以构建区块链的链上声誉和安全基础设施。目前,Trusta Labs 的业务主要包括两款产品:TrustScan 和 TrustGo。 (1)TrustScan,TrustScan是一款专为B端客户设计的产品,主要用于帮助Web3项目在用户获取、用户活跃和用户留存方面进行链上用户行为分析和精细化分层,以识别高价值且真实的用户。 (2)TrustGo,一款面向 C 端客户的产品,其提供的 MEDIA 分析工具,可以从五个维度(资金金额、活跃度、多样性、身份权益、忠诚度)对链上地址进行分析和评估,该产品强调对链上数据的深入分析,以提升交易决策的质量和安全性。 Trusta Labs 与 AI 的发展与规划如下: 目前 Trusta Labs 的两款产品均是利用AI模型对链上地址的交互数据进行处理和分析。区块链上地址交互的行为数据,均属于序列数据,这类型的数据非常适合用于 AI 模型的训练。在对链上数据进行清洗、整理和标记的过程中,Trusta Labs 将大量的工作交给 AI 来完成,极大地提高了数据处理的质量和效率,同时也减少了大量的人力成本。Trusta Labs 利用 AI 技术对链上地址交互数据进行深入分析和挖掘,对于 B 端客户而言,可以有效地识别出较大可能性的女巫地址。在已使用 Tursta Labs 产品的多个项目中,Tursta Labs 均较好地防范了潜在女巫攻击的发生;而对于 C 端客户,通过 TrustGo 产品,利用现有的 AI 模型,有效帮助用户深入了解了自己的链上行为数据。 Trusta Labs一直在紧密关注LLM模型的技术进展和应用实践。随着模型训练和推理成本不断降低,以及Web3领域大量语料和用户行为数据的积累,Trusta Labs将寻找合适的时机,引入LLM技术,利用 AI 的生产力为产品和用户提供更深入的数据挖掘和分析功能。在目前 Trusta Labs 已经提供丰富的数据的基础上,希望可以利用 AI 的智能分析模型,为数据结果提供更多合理、客观的数据解读功能,如针对 B 端用户提供定性和定量解读已抓取到女巫账户的分析,让用户更理解数据背后的原因分析,同时可以为 B 端用户向其客户投诉解释时提供更翔实的材料佐证。 另一方面,Trusta Labs 也计划利用已开源或者较为成熟的 LLM 模型,并结合以意图为中心的设计理念来构建 AI Agent,从而来帮助用户更快捷、更效率地解决链上交互的问题。就具体应用场景而言,未来通过 Trusta Labs 提供的基于 LLM 训练的 AI Agent 智能助理,用户可以直接通过自然语言与智能助理进行交流,智能助理即可“聪明”地反馈链上数据相关的信息,并针对已提供的信息进行后续操作的建议和规划,真正实现以用户意图为中心的一站式智能操作,极大降低用户使用数据的门槛,简化链上操作的执行。 此外,Trusta 认为,未来随着越来越多基于 AI 的数据产品的出现,每个产品的核心竞争要素可能不在于使用何种 LLM 模型,竞争的关键因素是对已掌握数据更深层次的理解和解读。基于对已掌握数据的解析,再结合 LLM 模型,才能训练出更“聪明”的 AI 模型。 1.5 0xScope 0xScope,成立于 2022 年,是一个以数据为核心的创新平台,其专注于区块链技术和人工智能的结合。0xScope 旨在改变人们处理、使用和看待数据的方式。0xScope 目前针对 B 端和 C 端客户分别推出了:0xScope SaaS products 和 0xScopescan。 (1)0xScope SaaS products,一个面向企业的 SaaS 解决方案,赋能企业客户进行投后管理、做出更好的投资决策、了解用户行为,并密切监控竞争动态。 (2)0xScopescan,一个 B2C 产品 ,其允许加密货币交易者调查选定区块链的资金流动和活动情况。 0xScope 的业务重点是利用链上数据抽象出通用数据模型,简化链上数据分析工作,将链上数据转化为可被理解的链上操作数据,从而帮助用户对链上数据进行深入分析。利用 0xScope 提供的数据工具平台,不仅可以提升链上数据质量,挖掘数据暗藏的信息,从而揭示更多的信息给用户,该平台也极大降低了数据挖掘的门槛。 0xScope 与 AI 的发展与规划如下: 0xScope 的产品正在结合大模型进行升级,这包含两个方向:第一,通过自然语言交互的模式进一步地降低用户的使用门槛;第二,利用 AI 模型提高在数据清洗、解析、建模和分析等环节的处理效率。同时,0xScope 的产品中即将上线具有 Chat 功能的 AI 互动模块,该功能将极大地降低用户进行数据查询和分析的门槛,仅通过自然语言即可与底层的数据进行交互和查询。 但在训练和使用AI的过程中,0xScope 发现其中仍面临这以下挑战:第一,AI 训练成本和时间成本较高。在提出一个问题后,AI 需要花费较长时间才能进行回复。因此,这个困难会迫使团队需要精简和聚焦业务流程,专注于垂直领域的问答,而不是让其成为一个全方位的超级AI助理。第二,LLM 模型的输出是不可控的。数据类的产品希望给出的结果是精准的,但目前LLM模型给出的结果很可能与实际的情况有一定出入,这对数据类产品的体验是非常致命的。此外,大模型的输出有可能会涉及到用户的隐私数据。因此,在产品中使用 LLM 模式时,团队需要对其有较大程度的限制,以使得 AI 模型输出的结果可控且精准。 未来,0xScope 计划利用 AI 专注于特定的垂直赛道并进行深耕。目前基于已大量积累大量链上数据,0xScope 可以对链上用户的身份进行定义,后续将继续利用 AI 工具抽象链上用户行为,进而打造出一套独特的数据建模的体系,通过这套数据挖掘和分析体系揭示出链上数据暗含的信息。 在合作方面,0xScope 将聚焦在两类群体:第一类,产品可以直接服务的对象,比如开发者、项目方、VC、交易所等,该群体需要目前产品所提供的数据;第二类,对 AI Chat 有需求的合作伙伴,如 Debank、Chainbase 等,他们只需要有相关的知识和数据,便可以直接调用 AI Chat。 VC insight——AI+Web3 数据公司的商业化和未来发展之路 本节内容通过采访了 4 位资深的 VC 投资人,将从投资和市场的视角来看 AI+Web3 数据行业的现状和发展,Web3 数据公司的核心竞争力以及未来的商业化道路。 2.1 AI+Web3 数据行业的现状和发展 目前,AI 与 Web3 数据的结合正处于一个积极探索的阶段,从各个头部 Web3 数据公司的发展方向来看,AI 技术以及 LLM 的结合都是必不可少的趋势。但同时 LLM 有其自身技术局限性,尚不能解决当前数据行业的很多问题。 因此,我们需要认识到并非盲目地与 AI 结合就能够增强项目的优势,或者是使用 AI 概念进行炒作,而是需要探索真正具有实用性和前景的应用领域。从 VC 的视角,目前 AI 与 Web3数据的结合已经有以下方面的探索: (1)通过 AI 技术来提高Web3 数据产品的能力,包括 AI 技术帮助企业提高内部数据处理分析的效率,以及相应提高对用户的数据产品的自动化分析、检索等能力。例如 SevenX Ventures 的Yuxing 提到 Web3 数据使用 AI 技术最主要的帮助是效率方面,比如 Dune 使用 LLM 模型做代码异常检测和将自然语言转化生成 SQL 去信息索引;还有用 AI 做安全预警的项目,AI 算法做异常检测效果比从纯数学统计更好,所以可以更有效地去做安全方面的监测;此外,经纬创投的子熹提到企业可以通过训练 AI 模型进行数据的预标注,能节约很多人力成本。尽管如此,VC 们都认为,在提高 Web3 数据产品的能力和效率方面,AI 起到的是辅助作用,例如数据的预标注,最终可能仍需要人工审核来确保准确性。 (2)利用 LLM 在适应性和交互上的优势,打造 AI Agent/Bot。例如使用大语言模型来检索整个 Web3 的数据,包括链上数据和链下新闻数据,进行信息聚合和舆情分析。Hashkey Capital 的 Harper 认为这类的 AI Agent更加偏向于信息的整合、生成,以及和用户之间的交互,在信息准确性和效率上会相对弱一些。 上述两方面的应用尽管已经有不少案例,但是技术和产品仍然在探索的早期,因此未来也需要不断地进行技术优化和产品改进。 (3)利用 AI 进行定价及交易策略分析:目前市场中有项目利用 AI 技术给 NFT 进行价格估算,如启明创投投资的 NFTGo,以及有些专业交易团队使用 AI 进行数据分析和交易执行。此外 Ocean Protocol 近期也发布了一个价格预测的AI产品。这类的产品似乎很有想象力,但在产品中、用户接受程度方面,尤其是准确性方面仍需要进行验证。 另一方面,有不少 VC,尤其是在 Web2 有投资的 VC会更关注提到 Web3 和区块链技术能够为 AI 技术带来的优势和应用场景。区块链具有公开可验证、去中心化的特点,以及密码学技术提供隐私保护能力,加上 Web3 对生产关系重塑,可能能够给 AI 带来一些新的机会: (1)AI 数据确权与验证。AI 的出现使数据内容生成变得泛滥和廉价。启明创投的唐弈提到对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权需要一个全新的体系,区块链可能可以提供帮助。经纬创投的子熹提到有数据交易所将数据放在NFT中进行交易,可以解决数据确权的问题。 另外,SevenX Ventures 的 Yuxing 提到Web3 数据能够改善 AI 造假和黑盒问题,当前 AI 在模型算法本身和数据方面都存在黑盒问题,会导致输出结果的偏差。而Web3的数据具有透明性,数据是公开可验证的,AI模型的训练源和结果都会更加明晰,使得AI更加公正,减少偏见和错误。但当前 Web3 的数据量还不够多,不足以给 AI 本身的训练赋能,因此短期不会实现。但是我们可以利用这一特性,将 Web2 数据上链,来防止 AI 的深度伪造。 (2)AI 数据标注众包及 UGC 社区:目前传统 AI 标注面临效率和质量较低的问题,尤其是在涉及到专业知识领域,可能还需要交叉学科知识,传统的通用数据标注公司是不可能覆盖的,往往需要专业团队内部来做。而通过区块链和 Web3 的概念引入数据标注的众包,则能很好地改善这个问题,例如经纬创投投资的Questlab,他们使用区块链技术提供数据标注的众包服务。此外,在一些开源模型社区中,也可以使用区块链概念来解决模型创作者经济的问题。 (3)数据隐私部署:区块链技术结合密码学相关技术可以保证数据的隐私和去中心化。经纬创投的子熹提到他们投资的一个合成数据公司,通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI 大模型训练使用。公司在处理数据的时候涉及到很多隐私部署的问题,使用了 Oasis区块链,可以有效避免了隐私和监管问题。 2.2 AI+Web3 数据公司如何打造核心竞争力 对于 Web3 技术公司来说,AI 的引入能够一定程度上增加项目的吸引力或关注度,但是目前大部分 Web3 技术公司相关结合 AI 的产品并不足以成为公司的核心竞争力,更多是在提供了更友好的体验,以及效率的提升。譬如 AI Agent 的门槛并不高,先做的公司可能在市场有先发优势,但并不产生壁垒。 而真正在 Web3 数据行业中产生核心竞争力和壁垒的应该是团队的数据能力以及如何应用 AI 技术解决具体分析场景的问题。 首先,团队的数据能力包括了数据源及团队进行数据分析和模型调整的能力,这是进行后续工作的基础。在采访中,SevenX Ventures、经纬创投和 Hashkey Capital 都一致提到了 AI+Web3 数据公司的核心竞争力取决于数据源的质量。在这个基础上,还需要工程师能够基于数据源熟练地进行模型微调、数据处理和解析。 另一方面,团队 AI 技术具体结合的场景也非常重要,场景应该是有价值的。Harper 认为,尽管目前 Web3 数据公司与 AI 的结合基本都是从 AI Agent 开始,但他们的定位也不同,例如 Hashkey Capital 投资的 Space and Time,和 chainML 合作推出了创建 AI agent 的基础设施,其中创建的 DeFi agent 被用于 Space and Time。 2.3 Web3 数据公司未来的商业化道路 另一个对于 Web3 数据公司很重要的话题是商业化。长期以来,数据分析公司的盈利模式都比较单一,大都 ToC 免费,主要 ToB 盈利,这很依赖于 B 端客户的付费意愿。在 Web3 领域,本身企业的付费意愿就不高,加上行业初创公司为主,项目方难以支撑长期的付费。因此目前 Web3 数据公司在商业化的处境上比较艰难。 在这个问题上,VC 们普遍认为当前 AI 技术的结合,仅应用在内部解决生产流程的问题,并没有改变本质上的变现难问题。一些新的产品形式如 AI Bot 等门槛不够高,可能一定程度上在 toC 领域增强用户的付费意愿,但仍然不是很强。AI 可能短期内不是解决数据产品商业化问题的解决方案,商业化需要更多的产品化努力,例如寻找更加合适的场景,和创新的商业模式。 在未来 Web3 与 AI 结合的路径上,利用 Web3 的经济模型结合 AI 数据可能会产生一些新的商业模式,主要在 ToC 领域。经纬创投的子熹提到 AI 产品可以结合一些 token 的玩法,提高整个社群的粘性、日活和情感,这是可行的,也更容易变现。启明创投的唐弈提到,从意识形态的角度,Web3 的价值体系可以结合到AI上的,很适合作为 bot 的账号体系或者说价值转化体系。例如一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。但这个概念属于未来的畅想,实际应用可能还有很长的路要走。 而在原来的商业模式,即用户直接付费上,需要有足够强的产品力,让用户有更强的付费意愿。例如更高质量的数据源、数据带来的效益超过支付的成本等,这不仅仅在于 AI 技术的应用,也在数据团队本身的能力之上。 关于Footprint Analytics Footprint Analytics是一家区块链数据解决方案提供商。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 30 条公链生态的 NFT,GameFi 以及 钱包地址资金流追踪数据。 关于Future3 Campus Future3 Campus是由万向区块链实验室和HashKey Capital共同发起的Web3.0创新孵化平台,重点聚焦Web3.0 Massive Adoption、DePIN、AI三大赛道,以上海、粤港澳大湾区、新加坡为主要孵化基地,辐射全球Web3.0生态。同时,Future3 Campus将推出首期5000万美金的种子基金用于Web3.0项目孵化,真正服务于Web3.0领域的创新创业。 来源:金色财经
lg
...
金色财经
2023-12-05
人工智能技术重塑工业PaaS低代码开发平台,提升工业互联网平台应用创建能力
go
lg
...
GPT通过上下文记忆、知识/库表索引、
Prompt
工程、Agent执行、通用工具集等扩充大模型的存储记忆、适配应用和调度执行能力,再结合财税、人力、供应链、研发等领域的知识,扩充大模型专业能力,形成体系化的企业服务大模型。 此外,东方国信也启动了公司自有垂直大模型BonGPT技术框架和应用系统的研发。在今年5月16日,东方国信董秘在投资者关系平台上回复投资者称,公司眼下正以垂类领域预训练大语言模型为核心,面向包括运营商、金融、工业、政府等在内的行业特点开展深度指令优化和模型精调,打造面向to B典型场景需求的基础能力。未来公司将用更垂类的数据去训练出在某个特定方向上更具深度、更细致、更精准、更具专业性的大模型。 人工智能大模型能够基于深度学习的自然语言处理技术,可以理解和生成人类语言文本。将其应用于工业APP开发领域,使开发者通过自然语言指令来进行零错误的开发,大大提高了开发效率和准确性。同时,大模型还能够帮助开发者从大量数据中提取有用的信息,为APP提供更准确、更智能的功能。 据麦肯锡公司进行的研究表明,人工智能技术可通过全自动化、动态监控等方式提高各生产环节的效率,实现降本增效,该技术特征可以将软件开发时间缩短50%以上。而该技术在工业PaaS平台的优化算法中,能够通过对系统性能、资源利用率等指标进行实时监测和分析,自动调整系统参数和配置,以提高系统的性能和稳定性。 所以虽然眼下并没有专门针对工业PaaS低代码开发平台和成本降低进行具体论证探讨,但可以看出,人工智能技术在整体软件开发领域的潜力十分巨大。这也意味着在未来的工业互联网发展过程中,人工智能代码生成能力的跨越式进步有望重塑工业PaaS低代码开发平台,使得非程序员的工程师能够使用自然语言指令进行零错误的工业APP开发。 因此,为了充分发挥人工智能技术在工业PaaS平台中的价值,眼下国内相关技术提供商注定将进一步研究和探索人工智能技术在工业PaaS平台中的应用方法和技术。 参考资料: 艾瑞咨询:2023年中国工业互联网平台行业研究报告 白旭洋:工业互联网中安全性增强的 边缘计算任务调度方法研究, 西安邮电大学 范婷婷:工业互联网平台赋能供应链协同的运行,杭州电子科技大学 IDC:《中国工业云IaaS+PaaS市场份额,2022:分化初现》 邬贺铨:边缘计算助力工业互联网,中国工程院 尹方达:工业物联网PaaS平台的商业模式研究,北京邮电大学
lg
...
金融界
2023-12-04
上一页
1
•••
4
5
6
7
8
•••
17
下一页
24小时热点
重磅!特朗普宣布对中国加征100%关税 “关税休战”接近终结?
lg
...
【美股收评】特朗普威胁对华大幅加征关税,美股暴跌!道指下挫近900点,科技板块领跌引发恐慌情绪飙升
lg
...
美股遭遇 "黑色星期五":纳指暴跌 3.56%,创四月来最大跌幅,全球风险资产集体承压
lg
...
史诗级崩盘!BTC 险守 10 万美元关口,山寨币市场为何惨遭血洗?
lg
...
早报 | 全网 24 小时爆仓金额超 191 亿美元;Kalshi 以 50 亿美元估值完成 3 亿美元融资
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#链界盛会#
lg
...
135讨论
#VIP会员尊享#
lg
...
1989讨论
#CES 2025国际消费电子展#
lg
...
21讨论