全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
A股
ChatGPT
概念股午后走强
go
lg
...
力盛体育直线涨停,科大国创、奥飞娱乐、蓝色光标、风语筑、万兴科技等涨幅靠前。
lg
...
金融界
2023-12-06
异动快报:返利科技(600228)12月6日13点27分触及涨停板
go
lg
...
前上涨。领涨股为芒果超媒。该股为传媒,
ChatGPT
,拼多多概念股概念热股,当日传媒概念上涨2.38%,
ChatGPT
概念上涨1.96%,拼多多概念股概念上涨1.0%。 12月5日的资金流向数据方面,主力资金净流出1418.08万元,占总成交额1.5%,游资资金净流出2439.85万元,占总成交额2.58%,散户资金净流入3857.93万元,占总成交额4.09%。 近5日资金流向一览见下表: 返利科技主要指标及行业内排名如下: 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-12-06
加密AI智能体已进化到哪步 会成为链上一等公民吗
go
lg
...
p交易等。 AI智能体长尾市场:虽然像
ChatGPT
这样的大型应用程序适合某些一般聊天目的,但AI智能体需要针对众多行业、主题和生态位市场进行微调。像Bittensor这样的市场激励“矿工”围绕目标行业(例如加密货币、生物技术、学术界)为特定任务(例如图像生成、预训练、预测建模)训练模型。虽然 Bittensor 还处于萌芽阶段,但开发人员已经在使用它在开源 LLM 的长尾之上构建应用程序/代理。 NPC消费者应用程序智能体:不可玩角色在 MMORPG 等游戏中很常见,但在多人消费者应用程序中不太常见。然而,加密消费者应用程序的金融化性质使AI智能体成为引入新型游戏机制的优秀参与者。开放人工智能基础设施公司 Ritual 最近发布了Frenrug,这是一个基于 LLM 的智能体,在Friend.tech内部运行,将根据用户消息执行交易(购买或出售key)。Friend.tech 用户可以尝试说服智能体购买他们的key、出售其他人的key,或者尝试让 Frenrug 智能体以其他创造性的方式使用其资金。 随着越来越多的应用程序和协议利用AI智能体,人类将使用它们作为访问加密经济的渠道。虽然AI智能体今天看起来像玩具,但在未来,它们将增强日常消费者体验,成为协议的关键利益相关者,并在它们之间创建整个经济体。 AI智能体还处于起步阶段,但这些链上经济体的一等公民已经开始展示其潜力。 来源:金色财经
lg
...
金色财经
2023-12-06
马斯克宣布贝莱德现货ETF获"种子资金" 比特币(BTC)、DOGE冲高
go
lg
...
I在2022年推出广受欢迎的聊天机器人
ChatGPT
并从其战略支持者微软公司筹集100亿美元资金后,AI融资仍然是今年初创公司的一大亮点。然而,监管机构担心该技术可能被用来传播错误信息。 马斯克长期以来,都直言不讳地表达了他构建更安全AI的计划。在今年早些时候的推特空间活动中,他表示X.AI将寻求创建一个“最大程度好奇”的AI模型,而不是明确地将道德编程到其AI模式中。 他曾批评大型科技公司的AI努力受到审查制度的影响,他于7月推出X.AI,称其为“最大程度寻求真相的AI”,可与谷歌的Bard和微软的Bing AI相媲美。2015年,马斯克与他人联合创立OpenAI,该公司在全球范围内掀起了生成式AI技术的热潮,但他于2018年辞去了董事会职务。 X.AI在11月推出Grok聊天机器人,可与OpenAI的
ChatGPT
竞争。 马斯克在11月份的文章中表示,这家AI初创公司将被整合到他的社交媒体平台X(前身为推特)中,也可以作为独立的应用程序提供。今年7月推出的X.AI背后的团队来自谷歌旗下DeepMind和其他顶级AI研究公司。 零售交易者似乎仍在观望比特币 比特币在贝莱德ETF利好消息传出后,周三亚市冲上44000美元高价。加密货币市场总市值在周二飙升至1.55万亿美元以上。值得注意的是,这一里程碑标志着比特币19个月以来的最高水平,推动比特币成为全球第九大可交易资产,超过Meta的8140亿美元市值。 尽管近期出现看涨势头,但分析师观察到零售需求仍然相对停滞。鉴于利率继续徘徊在 5.25% 以上,一些人将此归因于通胀环境和信贷兴趣下降的连锁反应。尽管分析师Rajat Soni的观点可能夸大了这种情况,但本质上是正确的。 美国多项经济指标飙升至历史新高,包括工资、薪金和家庭净资产。不过,分析师艾德·亚德尼(Ed Yardeni)表示,“圣诞反弹行情”可能已经在今年早些时候发生,标准普尔500指数11月份上涨8.9%。 这一上升反映了通胀压力的减弱和就业数据的强劲,然而,投资者仍保持谨慎态度,约有 6 万亿美元的“闲置资金”(dry powder)存放在货币市场基金中观望。 深入研究衍生品市场,特别是永续期货,是零售交易者的首选工具,这一点至关重要。这些合约也称为反向掉期,具有每8小时累积一次的嵌入利率。正的资金利率表明多头(买方)对杠杆的需求更大,而负的利率表明空头(卖方)正在寻求额外的杠杆。 大多数代币的每周资金费率在每周0.2%至0.4%之间波动,这表明多头对杠杆的需求略高。然而,在看涨时期,这一指标很容易超过4.3%,而目前期货未平仓合约排名前七的代币中的任何一个都没有出现这种情况。 目前,这一周期中零售参与者的涌入仍然难以捉摸,特别是对于表现出过度乐观的新进入者而言。虽然一些分析师指出了Coinbase应用程序的趋势,但必须考虑到币安(Binance)目前正受到监管机构的审查,其创始人赵长鹏面临潜在的法律问题。因此,现有的零售交易者可能已经从离岸交易所迁移到 Coinbase,而不是预示着新一波加密货币爱好者的到来。 比特币技术分析 CMTrade表示,比特币RSI 交易高于 70。这可能意味着价格要么处于持续上升趋势,要么只是超买,因此可能会形成修正,在这种情况下寻找看跌背离。 MACD 位于信号线上方且为正值,配置为正。 此外,价格交易高于 20 和 50 周期移动平均线,分别为 42815 和 42195美元。 “我们的枢轴点位于43260美元,我们的偏好是,只要43260美元是支撑位,上涨空间就占上风。” “另一种情况是,下行突破 43260美元,将试图寻求42590和42200美元。” 社区最近埋伏了USTC最近涨幅超过200%,还抄底了LUNC最近涨幅40%,还有AXS GMT这些链游,打的一些铭文最近涨幅十几倍。 目前还有社区投研出来的一些百倍潜力的币,和短期暴涨币,目前都是免费的,可以关注我进社区了解。 来源:金色财经
lg
...
金色财经
2023-12-06
【比特日报】马斯克突发重磅宣布!贝莱德现货ETF惊曝获得“种子资金” 比特币、狗狗币闻讯冲高
go
lg
...
I在2022年推出广受欢迎的聊天机器人
ChatGPT
并从其战略支持者微软公司筹集100亿美元资金后,AI融资仍然是今年初创公司的一大亮点。然而,监管机构担心该技术可能被用来传播错误信息。 马斯克长期以来,都直言不讳地表达了他构建更安全AI的计划。在今年早些时候的推特空间活动中,他表示X.AI将寻求创建一个“最大程度好奇”的AI模型,而不是明确地将道德编程到其AI模式中。 他曾批评大型科技公司的AI努力受到审查制度的影响,他于7月推出X.AI,称其为“最大程度寻求真相的AI”,可与谷歌的Bard和微软的Bing AI相媲美。2015年,马斯克与他人联合创立OpenAI,该公司在全球范围内掀起了生成式AI技术的热潮,但他于2018年辞去了董事会职务。 X.AI在11月推出Grok聊天机器人,可与OpenAI的
ChatGPT
竞争。 马斯克在11月份的文章中表示,这家AI初创公司将被整合到他的社交媒体平台X(前身为推特)中,也可以作为独立的应用程序提供。今年7月推出的X.AI背后的团队来自谷歌旗下DeepMind和其他顶级AI研究公司。 零售交易者似乎仍在观望比特币 比特币在贝莱德ETF利好消息传出后,周三亚市冲上44000美元高价。加密货币市场总市值在周二飙升至1.55万亿美元以上。值得注意的是,这一里程碑标志着比特币19个月以来的最高水平,推动比特币成为全球第九大可交易资产,超过Meta的8140亿美元市值。 尽管近期出现看涨势头,但分析师观察到零售需求仍然相对停滞。鉴于利率继续徘徊在 5.25% 以上,一些人将此归因于通胀环境和信贷兴趣下降的连锁反应。尽管分析师Rajat Soni的观点可能夸大了这种情况,但本质上是正确的。 (来源:Twitter) 美国多项经济指标飙升至历史新高,包括工资、薪金和家庭净资产。不过,分析师艾德·亚德尼(Ed Yardeni)表示,“圣诞反弹行情”可能已经在今年早些时候发生,标准普尔500指数11月份上涨8.9%。 这一上升反映了通胀压力的减弱和就业数据的强劲,然而,投资者仍保持谨慎态度,约有 6 万亿美元的“闲置资金”(dry powder)存放在货币市场基金中观望。 深入研究衍生品市场,特别是永续期货,是零售交易者的首选工具,这一点至关重要。这些合约也称为反向掉期,具有每8小时累积一次的嵌入利率。正的资金利率表明多头(买方)对杠杆的需求更大,而负的利率表明空头(卖方)正在寻求额外的杠杆。 (来源:CoinTelegraph) 大多数代币的每周资金费率在每周0.2%至0.4%之间波动,这表明多头对杠杆的需求略高。然而,在看涨时期,这一指标很容易超过4.3%,而目前期货未平仓合约排名前七的代币中的任何一个都没有出现这种情况。 目前,这一周期中零售参与者的涌入仍然难以捉摸,特别是对于表现出过度乐观的新进入者而言。虽然一些分析师指出了Coinbase应用程序的趋势,但必须考虑到币安(Binance)目前正受到监管机构的审查,其创始人赵长鹏面临潜在的法律问题。因此,现有的零售交易者可能已经从离岸交易所迁移到 Coinbase,而不是预示着新一波加密货币爱好者的到来。 比特币技术分析 CMTrade表示,比特币RSI 交易高于 70。这可能意味着价格要么处于持续上升趋势,要么只是超买,因此可能会形成修正,在这种情况下寻找看跌背离。 MACD 位于信号线上方且为正值,配置为正。 此外,价格交易高于 20 和 50 周期移动平均线,分别为 42815 和 42195美元。 “我们的枢轴点位于43260美元,我们的偏好是,只要43260美元是支撑位,上涨空间就占上风。” “另一种情况是,下行突破 43260美元,将试图寻求42590和42200美元。” (来源:CMTrade)
lg
...
小萧
2023-12-06
昆仑万维、吉比特逆势翻红!游戏ETF(159869)早盘持续下探!
go
lg
...
2023年12月6日早盘,短剧、
ChatGPT
概念股跌幅靠前,游戏ETF(159869)低开后持续下探。游戏板块情绪较弱,游族网络、姚记科技领跌超3%,掌趣科技、奥飞娱乐、名臣健康跟跌,仅昆仑万维、吉比特逆势翻红! 国泰君安认为,版号结构上,11月下发的国产版号仍以移动游戏为主,移动、移动网页双端、移动客户双端、移动客户主机三端分别有77、2、7、1款,移动游戏占比环比进一步提升,多端版号占比达到11.5%;游戏类型上,本次移动-休闲益智类游戏数量25款,环比增加18款,休闲益智占比较高。此前11月内未有国产版号下发印发市场担忧,随着11月批次重新回归且版号数量环比保持稳定,版号常态化趋势不改行业供给侧有望持续复苏,推动互联网游戏板块景气向上。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-12-06
Footprint Analytics x Future3 Campus联合发布AI与Web3研究报告
go
lg
...
程 2022 年 11 月 30 日,
ChatGPT
面世,首次展示了 AI 与人类低门槛、高效率交互的可能性。
ChatGPT
引发了对人工智能的更广泛探讨,重新定义了与 AI 互动的方式,使其变得更加高效、直观和人性化,也推动了人们对更多生成式人工智能的关注,Anthropic(Amazon)、DeepMind(Google)、Llama 等模型也随后进入人们的视野。与此同时,各行各业的从业者也开始积极探索 AI 会如何推动他们所在领域的发展,或者寻求通过与 AI 技术的结合在行业中脱颖而出,进一步加速了 AI 在各个领域的渗透。 1.2 AI 与 Web3 的交融 Web3 的愿景从改革金融体系开始,旨在实现更多的用户权力,并有望引领现代经济和文化的转变。区块链技术为实现这一目标提供了坚实的技术基础,它不仅重新设计了价值传输和激励机制,还为资源分配和权力分散提供了支持。 图 2:Web3 发展历程 早在 2020 年,区块链领域的投资公司 Fourth Revolution Capital(4RC)就曾指出,区块链技术将和 AI 结合,通过对金融、医疗、电子商务、娱乐等全球行业的去中心化,以实现对现有行业的颠覆。 目前,AI 与 Web3 的结合,主要是两大方向: 利用 AI 去提升生产力以及用户体验。 结合区块链透明、安全、去中心化存储、可追溯、可验证的技术特点,以及 Web3 去中心化的生产关系,解决传统技术无法解决的痛点或者激励社区参与,提高生产效率。 市场上 AI 与 Web3 的结合有以下的一些探索方向: 图 3:AI 与 Web3 结合全景图 数据:区块链技术可以应用在模型数据存储上,提供加密数据集,保护数据隐私和记录模型使用数据的来源、使用情况,以及校验数据的真实性。通过访问和分析存储在区块链上的数据,AI 可以提取有价值的信息,并用于模型训练和优化。同时,AI 也可以作为数据生产工具,去提高 Web3 数据的生产效率。 算法:Web3 中的算法可以为 AI 提供更安全、可信和自主控制的计算环境,为 AI 体统提供加密保障,在模型参数上,内嵌安全防护栏,防止系统被滥用或者恶意操作。AI 可以与 Web3 中的算法进行交互,例如利用智能合约执行任务、验证数据和执行决策。同时,AI 的算法也可以为 Web3 提供更智能化和高效的决策和服务。 算力:Web3 的分散式计算资源可以为 AI 提供高性能的计算能力。AI 可以利用 Web3 中的分散式计算资源进行模型的训练、数据分析和预测。通过将计算任务分发到网络上的多个节点,AI 可以加快计算速度,并处理更大规模的数据。 在本文中,我们将重点探索如何利用 AI 的技术,去提升 Web3 数据的生产效率以及使用体验。 Web3数据现状 2.1 Web2 & Web3 数据行业对比 作为 AI 最核心的组成部分“数据”,在 Web3 跟我们熟悉的 Web2 很着很多的区别。差异主要是在于 Web2 以及 Web3 本身的应用架构导致其产生的数据特征有所不同。 2.1.1 Web2 & Web3 应用架构对比 图 4:Web2 & Web3 应用架构 在 Web2 架构中,通常是由单一实体(通常是一家公司)来控制网页或者 APP,公司对于他们构建的内容有着绝对的控制权,他们可以决定谁可以访问其服务器上的内容和逻辑,以及用户拥有怎样的权益,还可以决定这些内容在网上存在的时长。不少案例表明,互联网公司有权改变其平台上的规则,甚至中止为用户提供服务,而用户对此无法保留所创造的价值。 而 Web3 架构则借助了通用状态层(Universal State Layer)的概念,将一部分或者全部的内容和逻辑放置在公共区块链上。这些内容和逻辑是公开记录在区块链上的,可供所有人访问,用户可以直接控制链上内容和逻辑。而在 Web2 中,用户需要帐户或 API 密钥才能与区块链上的内容进行交互。用户可以直接控制其对应的链上内容和逻辑。不同于 Web2,Web3 用户无需授权帐户或 API 密钥就能与区块链上的内容进行交互(特定管理操作除外)。 2.1.2 Web2 与 Web3 数据特征对比 图 5:Web2 与 Web3 数据特征对比 Web2 数据通常表现为封闭和高度受限的,具有复杂的权限控制,高度成熟、多种数据格式、严格遵循行业标准,以及复杂的业务逻辑抽象。这些数据规模庞大,但互操作性相对较低,通常存储在中央服务器上,且不注重隐私保护,大多数是非匿名的。 相比之下,Web3 数据更加开放,访问权限更广泛,尽管成熟度较低,以非结构化数据为主,标准化较为罕见,业务逻辑抽象相对简化。Web3 的数据规模相对 Web2 较小,但它具有较高的互操作性(比如 EVM 兼容),并可分散或集中存储数据,同时强调用户隐私,用户通常采用匿名方式进行链上交互。 2.2 Web3 数据行业现状与前景,以及遇到的挑战 在 Web2 时代,数据如石油的“储量”般珍贵,访问和获取大规模数据一直是极大的挑战。在 Web3 中,数据的开放性和共享性一下子让大家觉得“石油到处都是”,使得 AI 模型能够更轻松地获取更多的训练数据,这对于提高模型性能和智能水平至关重要。但对 Web3 这个“新石油” 的数据处理依然有很多问题待解决,主要有以下几个: 数据来源:链上数据“标准”繁杂分散,数据处理花费大量人工成本 处理链上数据时,需要反复执行耗时而劳动密集的索引过程,需要开发者和数据分析师花费大量时间和资源来适应不同链、不同项目之间的数据差异。链上数据行业缺乏统一的生产和处理标准,除了记录到区块链账本上的,events,logs,and traces 等都基本上是项目自己定义和生产(或生成)的,这导致非专业交易者很难辨别并找到最准确和可信的数据,增加了他们在链上交易和投资决策中的困难。比如,去中心化交易所 Uniswap 和 Pancakeswap 就有可能在数据处理方法和数据口径上存在差异,过程中的检查和统一口径等工序进一步加大了数据处理的复杂性。 数据更新:链上数据体量大且更新频率高,难以及时地处理成结构化数据 区块链是时刻变动的,数据更新以秒甚至毫秒级别计。数据的频繁产生和更新使其难以维持高质量的数据处理和及时的更新。因此,自动化的处理流程是十分重要的,这也是对于数据处理的成本和效率的一大挑战。Web3 数据行业仍处于初级阶段。随着新合约的层出不穷和迭代更新,数据缺乏标准、格式多样,进一步增加了数据处理的复杂性。 数据分析:链上数据的匿名属性,导致数据身份难以区分 链上数据通常不包含足够的信息来清晰识别每个地址的身份,这使得数据在与链下的经济、社会或法律动向难以联动。但是链上数据的动向与现实世界紧密相关,了解链上活动与现实世界中特定个体或实体的关联性对于特定的场景比如数据分析来说十分重要。 随着大语言模型(LLM)技术引发的生产力变更讨论,能否利用 AI 来解决这些挑战也成为 Web3 领域的一个焦点关注之一。 AI 与 Web3 数据碰撞产生的化学反应 3.1 传统 AI 与 LLM 的特征对比 在模型训练方面,传统 AI 模型通常规模较小,参数数量在数万到数百万之间,但为了确保输出结果的准确性,需要大量的人工标注数据。LLM 之所以如此强大,部分原因在于其使用了海量的语料拟合百亿、千亿级以上的参数,极大地提升了它对自然语言的理解能力,但这也意味着需要更多的数据来进行训练,训练成本相当高昂。 在能力范围和运行方式上,传统 AI 更适合特定领域的任务,能够提供相对精准和专业的答案。相比之下,LLM 更适合通用性任务,但容易产生幻觉问题,这意味着在一些情况下,它的回答可能不够精确或专业,甚至完全错误。因此,如果需要和客观,可信任,和可以追溯的结果,可能需要进行多次检查、多次训练或引入额外的纠错机制和框架。 图 6:传统 AI 与大模型语言模型 (LLM)的特征对比 3.1.1 传统 AI 在 Web3 数据领域的实践 传统 AI 已经在区块链数据行业展现了其重要性,为这一领域带来了更多创新和效率。例如,0xScope 团队采用 AI 技术,构建了基于图计算的群集分析算法,通过不同规则的权重分配来帮助准确识别用户之间的相关地址。这种深度学习算法的应用提高了地址群集的准确性,为数据分析提供了更精确的工具。Nansen 则将 AI 用于 NFT 价格预测,通过数据分析和自然语言处理技术,提供有关 NFT 市场趋势的见解。另一方面,Trusta Labs使用了基于资产图谱挖掘和用户行为序列分析的机器学习方法,以增强其女巫检测解决方案的可靠性和稳定性,有助于维护区块链网络生态的安全。另一方面,Trusta Labs 采用了图挖掘和用户行为分析的方法,以增强其女巫检测解决方案的可靠性和稳定性,有助于维护区块链网络的安全。Goplus 在其运营中利用传统人工智能来提高去中心化应用程序(dApps)的安全性和效率。他们收集和分析来自 dApp 的安全信息,提供快速风险警报,帮助降低这些平台的风险敞口。这包括通过评估开源状态和潜在恶意行为等因素来检测 dApp 主合同中的风险,以及收集详细的审计信息,包括审计公司凭证、审计时间和审计报告链接。Footprint Analytics 则使用 AI 生成生产结构化数据的代码,分析 NFT 交易 Wash trading 交易以及机器人账户筛选排查。 然而,传统 AI 拥有的信息有限,专注于使用预定的算法和规则执行预设任务,而 LLM 则通过大规模的自然语言数据学习,可以理解和生成自然语言,这使其更适合处理复杂且巨量的文本数据。 最近,随着 LLM 取得了显著进展,人们对 AI 与 Web3 数据的结合,也进行了一些新的思考与探索。 3.1.2 LLM 的优势 LLM 相对于传统人工智能具有以下优势: 可扩展性:LLM 支持大规模数据处理 LLM 在可扩展性方面表现出色,能够高效处理大量数据和用户互动。这使其非常适合处理需要大规模信息处理的任务,如文本分析或者大规模数据清洗。其高度的数据处理能力为区块链数据行业提供了强大的分析和应用潜力。 适应性:LLM 可学习适应多领域需求 LLM 具备卓越的适应性,可以为特定任务进行微调或嵌入行业或私有数据库,使其能够迅速学习和适应不同领域的细微差别。这一特性使 LLM 成为了解决多领域、多用途问题的理想选择,为区块链应用的多样性提供了更广泛的支持。 提高效率:LLM 自动化任务提高效率 LLM 的高效率为区块链数据行业带来了显著的便利。它能够自动化原本需要大量人工时间和资源的任务,从而提高生产力并降低成本。LLM 可以在几秒内生成大量文本、分析海量数据集,或执行多种重复性任务,从而减少了等待和处理时间,使区块链数据处理更加高效。 任务分解:可以生成某些工作的具体计划,把大的工作分成小步骤 LLM Agent 具备独特的能力,即可以生成某些工作的具体计划,将复杂任务分解为可管理的小步骤。这一特性对于处理大规模的区块链数据和执行复杂的数据分析任务非常有益。通过将大型工作分解成小任务,LLM 可以更好地管理数据处理流程,并输出高质量的分析。 这一能力对于执行复杂任务的 AI 系统至关重要,例如机器人自动化、项目管理和自然语言理解与生成,使其能够将高级任务目标转化为详细的行动路线,提高任务执行的效率和准确性。 可访问性和易用性:LLM 以自然语言提供用户友好互动 LLM 的可访问性使更多用户能够轻松与数据和系统进行互动,让这些互动更加用户友好。通过自然语言,LLM 使数据和系统更容易访问和交互,无需用户学习复杂的技术术语或特定命令,例如,SQL,R,Python 等来做数据获取和分析。这一特性拓宽了区块链应用的受众范围,让更多的人能够访问和使用 Web3 应用和服务,不论他们是否精通技术,从而促进了区块链数据行业的发展和普及。 3.2 LLM 与 Web3 数据的融合 图 7:区块链数据与 LLM 的融合 大型语言模型的培训需要依赖大规模数据,通过学习数据中的模式来建立模型。区块链数据中蕴含的交互和行为模式是 LLM 学习的燃料。数据量和质量也直接影响 LLM 模型的学习效果。 数据不仅仅是 LLM 的消耗品,LLM 还有助于生产数据,甚至可以提供反馈。例如,LLM 可以协助数据分析师在数据预处理方面做出贡献,如数据清洗和标注,或者生成结构化数据,清除数据中的噪声,凸显有效信息。 3.3 增强 LLM 的常用技术解决方案
ChatGPT
的出现,不仅向我们展示了 LLM 解决复杂问题的通用能力,同时也引发了全球范围的,对在通用能力上去叠加外部能力的探索。这里包括,通用能力的增强(包括上下文长度、复杂推理、数学、代码、多模态等)以及外部能力的扩充(处理非结构化数据、使用更复杂的工具、与物理世界的交互等)。如何将 crypto 领域的专有知识以及个人的个性化私有数据嫁接到大模型的通用能力上,是大模型在 crypto 垂直领域商业化落地的核心技术问题。 目前,大多数应用都集中在检索增强生成(RAG)上,比如提示工程和嵌入技术,已经存在的代理工具也大多都聚焦于提高 RAG 工作的效率和准确性。市场上主要的基于 LLM 技术的应用栈的参考架构有以下几种: Prompt Engineering 图 8:Prompt Engineering 当前,大多数从业者在构建应用时采用基础解决方案,即 Prompt Engineering。这一方法通过设计特定的 Prompt 来改变模型的输入,以满足特定应用的需求,是最方便快捷的做法。然而,基础的 Prompt Engineering 存在一些限制,如数据库更新不及时、内容冗杂、以及对输入上下文长度(In-Context Length)的支持和多轮问答的限制。 因此,行业内也在研究更先进的改进方案,包括嵌入(Embedding)和微调(Fine-tuning)。 嵌入(Embedding) 嵌入(Embedding)是一种广泛应用于人工智能领域的数据表示方法,能高效捕获对象的语义信息。通过将对象属性映射成向量形式,嵌入技术能够通过分析向量之间的相互关系,快速找到最有可能正确的答案。嵌入可以在 LLM 的基础上构建,以利用该模型在广泛语料上学到的丰富语言知识。通过嵌入技术将特定任务或领域的信息引入到预训练的大模型中,使得模型更专业化,更适应特定任务,同时保留了基础模型的通用性。 用通俗的话来讲,嵌入就类似于你给一个经过综合训练的大学生一本工具书,让他拿着拥有特定任务相关知识的工具书去完成任务,他可以随时查阅工具书,然后可以解决特定的问题。 微调(Fine-tuning) 图 9:Fine Tuning 微调(Fine-tuning)与嵌入不同,通过更新已经预训练的语言模型的参数,使其适应特定任务。这种方法允许模型在特定任务上表现出更好的性能,同时保持通用性。微调的核心思想是调整模型参数,捕捉与目标任务相关的特定模式和关系。但微调的模型通用能力上限仍然受限于基座模型本身。 用通俗的话来讲,微调就类似于给经过综合训练的大学生上专业知识课程,让他掌握除了综合能力以外的专业课知识,能自行解决专业板块的问题。 重新训练 LLM 当前的 LLM 虽然强大,但不一定能够满足所有需求。重新训练 LLM 是一种高度定制化的解决方案,通过引入新数据集和调整模型权重,使其更适应特定任务、需求或领域。然而,这种方法需要大量计算资源和数据,并且管理和维护重新训练后的模型也是挑战之一。 Agent 模型 图 10:Agent 模型 Agent 模型是一种构建智能代理的方法,它以 LLM 作为核心控制器。这个系统还包括几个关键组成部分,以提供更全面的智能。 Planning,规划:将大任务分成小任务,这样更容易完成 Memory,反思:通过反思过去的行为,改进未来的计划 Tools,工具使用:代理可以调用外部工具获取更多信息,如调用搜索引擎、计算器等 人工智能代理模型具备强大的语言理解和生成能力,能够解决通用问题,进行任务分解以及自我反思。这使得它在各种应用中都有广泛的潜力。然而,代理模型也存在一些局限性,例如受到上下文长度的限制、长期规划和任务拆分容易出错、输出内容的可靠性不稳定等问题。这些局限性需要长期不断的研究和创新,以进一步拓展代理模型在不同领域的应用。 以上的各种技术并不是相互排斥的,它们可以在训练和增强同一个模型的过程中一起使用。开发者可以充分发挥现有大语言模型的潜力,尝试不同的方法,以满足日益复杂的应用需求。这种综合使用不仅有助于提高模型的性能,还有助于推动 Web3 技术的快速创新和进步。 然而,我们认为,虽然现有的 LLM 已经在 Web3 的快速发展中发挥了重要作用,但在充分尝试这些现有模型(如 OpenAI、Llama 2 以及其他开源 LLM)之前,我们可以从浅入深,从 prompt engineering 和嵌入等 RAG 策略入手,谨慎考虑微调和重新训练基础模型。 3.4 LLM 如何加速区块链数据生产的各个流程 3.4.1 区块链数据的一般处理流程 当今,区块链领域的建设者逐渐认识到数据产品的价值。这一价值覆盖了产品运营监控、预测模型、推荐系统以及数据驱动的应用程序等多个领域。尽管这一认知逐渐增强,但作为数据获取到数据应用中不可或缺的关键步骤,数据处理往往被忽视。 图 12:区块链数据处理流程 将区块链原始非结构化数据,如 events 或 logs 等,转换为结构化的数据 区块链上的每一笔交易或事件都会生成 events 或 logs,这些数据通常是非结构化的。这一步骤是获取数据的第一入口,但数据仍然需要被进一步处理以提取有用信息,得到结构化的原始数据。这包括整理数据、处理异常情况和转化为通用格式。 将结构化的原始数据,转换为具有业务意义的抽象表 在得到结构化原始数据后,需要进一步进行业务抽象,将数据映射到业务实体和指标上,比如交易量、用户量等业务指标,将原始数据转化为对业务和决策有意义的数据。 从抽象表中,计算提取业务指标 有了抽象的业务数据后,可以在业务抽象的数据上进行进一步计算,就可以得出各种重要的衍生指标。例如交易总额的月增长率、用户留存率等核心指标。这些指标可以借助 SQL、Python 等工具实现,更加有可能帮助监控业务健康、了解用户行为和趋势,从而支持决策和战略规划。 3.4.2 区块链数据生成流程加入 LLM 后的优化 LLM 在区块链数据处理中可以解决多个问题,包括但不限于以下内容: 处理非结构化数据: 从交易日志和事件中提取结构化信息:LLM 可以分析区块链的交易日志和事件,提取其中的关键信息,如交易金额、交易方地址、时间戳等,将非结构化数据转化为的带有业务意义的数据,使其更易于分析和理解。 清洗数据,识别异常数据:LLM 可以自动识别和清洗不一致或异常的数据,帮助确保数据的准确性和一致性,从而提高数据质量。 进行业务抽象: 将原始链上数据映射到业务实体:LLM 可以将原始区块链数据映射到业务实体,例如将区块链地址映射到实际用户或资产,从而使业务处理更加直观和有效。 处理非结构化链上内容,打标签:LLM 可以分析非结构化数据,如 Twitter 情感分析结果,将其标记为正面、负面或中性情感,从而帮助用户更好地理解社交媒体上的情感倾向。 自然语言解读数据: 计算核心指标:基于业务抽象,LLM 可以计算核心业务指标,如用户交易量、资产价值、市场份额等,以帮助用户更好地了解其业务的关键性能。 查询数据:LLM 可以通过 AIGC,理解用户意图,生成 SQL 查询,使用户能够以自然语言提出查询请求,而不必编写复杂的 SQL 查询语句。这增加了数据库查询的可访问性。 指标选择、排序和相关性分析:LLM 可以帮助用户选择、排序和分析不同的多个指标,以更好地理解它们之间的关系和相关性,从而支持更深入的数据分析和决策制定。 产生业务抽象的自然语言描述:LLM 可以根据事实数据,生成自然语言摘要或解释,以帮助用户更好地理解业务抽象和数据指标,提高可解释性,并使决策更具合理性。 3.5 目前用例 根据 LLM 自身的技术以及产品体验优势,它可以被应用到不同的链上数据场景,技术上从易到难可以将这些场景分成四类: 数据转换:进行数据增强、重构等操作,如文本摘要、分类、信息抽取。这类应用开发较快,但更适合通用场景,不太适合大量数据的简单批量化处理。 自然语言接口:将 LLM 连接知识库或工具,实现问答或基本工具使用的自动化。这可以用于构建专业聊天机器人,但其实际价值受其所连接的知识库质量等其他因素影响。 工作流自动化:使用 LLM 实现业务流程的标准化和自动化。这可以应用于较复杂的区块链数据处理流程,如解构智能合约运行过程、风险识别等。 协助机器人与助手辅助系统:辅助系统是在自然语言接口的基础上,集成更多数据源和功能的增强系统,大幅提高用户工作效率。 图 11:LLM 应用场景 3.6 LLM 的局限性 3.6.1 行业现状:成熟应用、正在攻克的问题以及尚未解决的挑战 在 Web3 数据领域,尽管已经取得了一些重要的进展,但仍然面临一些挑战。 相对成熟的应用: 使用 LLM 进行信息处理:LLM 等 AI 技术已成功用于生成文本摘要、总结、解释等工作,帮助用户从长篇文章、专业报告中提取关键信息,提高了数据的可读性和可理解性。 使用 AI 解决开发问题:LLM 已经应用于解决开发过程中的问题,例如替代StackOverflow 或搜索引擎,为开发者提供问题解答和编程支持。 有待解决与正在探索的问题: 利用 LLM 生成代码:行业正在努力将 LLM 技术应用于自然语言到 SQL 查询语言的转换,以提高数据库查询的自动化和可理解性。然而,过程中会有很多困难,比如在某些情境下,生成的代码要求极高的准确性,语法必须百分之百正确,以确保程序能够无 bug 运行,并获得正确的结果。难点还包括确保问题回答的成功率、正确率,以及对业务的深刻理解。 数据标注问题:数据标注对于机器学习和深度学习模型的训练至关重要,但在 Web3 数据领域,特别是处理匿名的区块链数据时,标注数据的复杂性较高。 准确性和幻觉(Hallucination)问题:AI 模型中幻觉的出现可能受多因素影响,包括有偏见或不足的训练数据、过度拟合、有限的上下文理解、缺乏领域知识、对抗性攻击和模型架构。研究人员和开发者需要不断改进模型的训练和校准方法,以提高生成文本的可信度和准确性。 利用数据进行业务分析和文章输出:将数据用于业务分析和生成文章仍然是一个具有挑战性的问题。问题的复杂性、需要精心设计的提示(prompt)、以及高质量的数据、数据量、减少幻觉问题的方法都是待解决的问题。 根据业务领域自动索引智能合同数据以进行数据抽象:自动为不同业务领域的智能合同数据建立索引以进行数据抽象仍然是一个未解决的问题。这需要综合考虑不同业务领域的特点,以及数据的多样性和复杂性。 处理时序数据,表格文档数据等更复杂的模态:DALL·E 2 等多模态模型非常擅长在文字生成图像、语音等常见模态。而在区块链以及金融领域需要特别地对待一些时序数据,而非简单地把文本向量化就能解决。联和时序数据与文本,跨模态联合训练等,是实现数据智能分析以及应用的重要研究方向。 3.6.2 为何只靠 LLM 不能完美解决区块链数据行业的问题 作为语言模型,LLM 更适用于处理对流畅度要求较高的场景,而在追求准确性方面,可能需要对模型进行更进一步的调整。在将 LLM 应用于区块链数据行业时,以下框架可提供一些参考。 图 13:区块链数据行业下 LLM 输出的流畅性、准确性和用例风险 在评估 LLM 在不同应用中的适用性时,关注流畅度和准确性是至关重要的。流畅度指的是模型的输出是否自然、通顺,准确性则表示模型的答案是否准确。这两个维度在不同应用场景中有不同的要求。 对于流畅度要求较高的任务,如自然语言生成、创意写作等,LLM 通常能够胜任,因为其在自然语言处理方面的强大性能使其能够生成流畅的文本。 区块链数据面临着数据解析、数据处理、数据应用等多方面的问题。LLM 拥有卓越的语言理解和推理能力,使其成为与区块链数据互动、整理和概括的理想工具。然而,LLM 并不能解决所有区块链数据领域的问题。 在数据处理方面,LLM 更适合快速迭代和探索性处理链上数据,不断尝试新的处理方法。然而,LLM 在生产环境中的详细核对等任务方面仍存在一些限制。典型的问题是 token 长度不够,无法应对长上下文的内容。耗时的 prompt,回答不稳定影响下游任务进而导致成功率不稳定的问题,以及执行大批量任务的效率不高。 其次,LLM 处理内容的过程中很可能出现幻觉问题。据估计,
ChatGPT
的幻觉概率约为 15% 至 20%,而由于其处理过程的不透明性,很多错误难以察觉。因此,框架的建立和专家知识的结合变得至关重要。此外,LLM 结合链上数据还是有很多挑战: 链上数据实体类型多、数量庞大,以何种形式投喂给 LLM,有效地运用在具体的商业化场景,类似其他垂直行业,需要更多研究和探索。 链上数据包括结构化和非结构化数据,目前行业大多数数据解决方案,都是基于对业务数据的理解。解析链上数据的过程中,用 ETL 去过滤,清洗,补充和复原业务逻辑,进一步把非结构化数据整理为结构化数据,可以为后期多种业务场景提供更高效的分析。比如,结构化的 DEX trades,NFT marketplace transactions,wallet address portfolio 等,就具有前面提到的高质量,高价值,准确和真实等特点,可以给通用 LLM 提供高效的补充。 被误解的 LLM LLM 可以直接处理非结构化数据,因此结构化数据将不再被需要? LLM 通常基于海量文本数据预训练而来,天然适合处理各类非结构化的文本数据。然而,各个行业已经拥有大量结构化数据,尤其 Web3 领域中解析后的数据。如何有效的利用这些数据,增强 LLM,是一个行业的热门研究课题。 对于 LLM,结构化数据仍然具有以下的优势: 海量:大量的数据储存在各种应用背后的数据库和其他标准格式里面,特别是私有数据。每个公司和行业都还有大量 LLM 没有用于预训练的墙内数据。 已有:这些数据不需要重新生产,投入成本极低,唯一的问题是怎么用起来。 高质量和高价值:领域内长期积累的,蕴含专家的专业知识,通常都沉淀到了结构化数据里面,用于产学研。结构化数据的质量是数据可用性的关键,其中包括数据的完整性、一致性、准确性、唯一性和事实性。 高效率:结构化数据以表格、数据库或其他规范格式存储,模式是预先定义的,并且在整个数据集中保持一致。这意味着数据的格式、类型和关系都是可预测和可控的,使得数据的分析和查询更加简单和可靠。而且,行业已经有成熟的 ETL 及各种数据处理和管理工具,使用起来也更加高效和便捷。LLM 可以通过 API,把这些数据使用起来。 准确性和事实性:LLM 的文本数据,基于 token 概率,目前还不能稳定的输出确切的答案,产生的幻觉问题一直是 LLM 要解决的核心根本问题。对于很多行业和场景,会形成安全和可靠性问题,比如,医疗,金融等。结构化数据,正是可以辅助和矫正LLM 这些问题的一个方向。 体现关系图谱,和特定业务逻辑:不同类型的结构化数据,可以以特定的组织形式(关系型数据库,图数据库等),输入到 LLM,解决不同类型的领域问题。结构化数据使用标准化的查询语言(如 SQL),使得对数据进行复杂的查询和分析变得更加高效和准确。知识图谱 (Knowledge Graph) 可以更好地表达实体之间的关系,也更容易进行关联查询。 使用成本低:不用 LLM 每次重新从底层重新训练整个底座模型,可以结合 Agents 和LLM API 等 LLM 赋能方式,更快更低成本的接入 LLM。 目前市场上还有一些脑洞大开的观点,认为 LLM 在处理文本信息和非结构化信息方面的能力极强,只需将原始数据,包括非结构化数据,简单导入到 LLM,就能达到目的。这个想法类似于要求通用 LLM 解数学题,在没有专门构建数学能力模型的情况下,大多数 LLM 可能会在处理简单的小学加减题时出错。反而,建立类似数学能力模型,和图像生成模型的 Crypto LLM 垂直模型,才是解决 LLM 在 Crypto 领域更落地的实践。 4.2 LLM 可以从新闻、推特等文字信息推测内容,人们不再需要链上数据分析来得出结论? LLM 虽然可以从新闻、社交媒体等文本中获得信息,但直接从链上数据中获得的洞察仍然是不可或缺的,主要原因有: 链上数据是原始的第一手资讯,而新闻和社交媒体中的信息可能存在片面性或误导性。直接分析链上数据可以减少信息偏差。尽管利用 LLM 进行文本分析存在理解偏差的风险,但直接分析链上数据可以减少误读。 链上数据包含全面的历史交互和交易记录,分析可以发现长期趋势和模式。链上数据还可以展现整个生态系统的全貌,如资金流向、各方关系等。这些宏观的洞察有助于更深入地理解状况。而新闻和社交媒体信息通常更零散且短期。 链上数据是开放的。任何人都可以验证分析结果,避免信息的不对称。而新闻和社交媒体未必都如实披露。文本信息和链上数据可以相互验证。综合两者可以形成更立体和准确的判断。 链上数据分析仍是不可或缺的。LLM 从文本中获取信息具有辅助作用,但不能取代直接分析链上数据。充分利用两者优势才能取得最佳效果。 4.3 利用 LangChain、LlamaIndex 或其他 AI 工具,在 LLM 的基础上构建区块链数据解决方案非常容易? LangChain 和 LlamaIndex 等工具为构建自定义的简单 LLM 应用提供了便利,使快速搭建成为可能。然而,将这些工具成功应用于实际生产环境中涉及到更多的挑战。构建一个高效运行、保持高质量的 LLM 应用是一项复杂的任务,需要深入理解区块链技术和 AI 工具的工作原理,并有效地将它们整合在一起。这对于区块链数据行业来说,是一项重要但具有挑战性的工作。 在这个过程中,必须认识到区块链数据的特性,它要求极高的精准性和可重复校验性。一旦数据通过 LLM 进行处理和分析,用户对其准确性和可信度有很高的期望。这与 LLM 的模糊容错性之间存在着潜在的矛盾。因此,在构建区块链数据解决方案时,必须仔细权衡这两方面的需求,以满足用户的期望。 当前市场上,虽然已经有了一些基础工具,但这个领域仍在快速演进和不断迭代。类比于 Web2 世界的发展历程,从最初的 PHP 编程语言到更成熟、可扩展的方案如 Java、Ruby、Python,以及 JavaScript 和 Node.js 等,再到 Go 和 Rust 等新兴技术,都经历了不断的演变。AI 工具也在不断变化,新兴的 GPT 框架如 AutoGPT,Microsft AutoGen,及最近OpenAI 自己推出的
ChatGPT
4.0 Turbo 的 GPTs 和 Agents 等只是展示了未来可能性的一部分。这表明,区块链数据行业和 AI 技术都还有许多发展空间,需要不断努力和创新。 当前在应用 LLM 时,有两个陷阱需要特别注意: 期望值过高:很多人认为 LLM 可以解决一切问题,但实际上 LLM 有明显的局限性。它需要大量的计算资源,训练成本高昂,而且训练过程可能不稳定。对 LLM 的能力要有现实的期望,明白它在某些场景下表现出色,如自然语言处理和文本生成,但在其他领域可能无法胜任。 忽视业务需求:另一个陷阱是强行应用 LLM 技术,而不充分考虑业务需求。在应用 LLM 之前,务必明确具体的业务需求。需要评估 LLM 是否是最佳技术选择,并做好风险评估和控制。强调 LLM 的有效应用需要根据实际情况慎重考虑,避免误用。 尽管 LLM 在许多领域都具备巨大潜力,但开发者和研究者在应用 LLM 时需要保持谨慎,采取开放的探索态度,以找到更适合的应用场景并最大程度地发挥其优势。 关于Footprint Analytics Footprint Analytics是一家区块链数据解决方案提供商。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 30 条公链生态的 NFT,GameFi 以及 钱包地址资金流追踪数据。 关于Future3 Campus Future3 Campus是由万向区块链实验室和HashKey Capital共同发起的Web3.0创新孵化平台,重点聚焦Web3.0 Massive Adoption、DePIN、AI三大赛道,以上海、粤港澳大湾区、新加坡为主要孵化基地,辐射全球Web3.0生态。同时,Future3 Campus将推出首期5000万美金的种子基金用于Web3.0项目孵化,真正服务于Web3.0领域的创新创业。 来源:金色财经
lg
...
金色财经
2023-12-06
Future3 Campus访谈丨资本是如何看待AI+Web3的?
go
lg
...
者复制后去使用。二是聊天对话方式,基于
chatgpt
改造的聊天agent,主要针对提供聊天窗口的,不那么强调在SQL和搜索优化上,它更随意点,比如请告诉我哪个KOL喊单了,这个安全事件对token的影响有什么(这个时候可能就是全网搜索出来一个结果,这里就不会强调调取数据库的SQL优化)。三是通过AI创建合适的模型将链下和链上数据进行整理,提取更好的insight。 相比之下,一需要项目方有更强的数据库搭建能力,因为Web3的数据处理起来很麻烦,不过要达到准确性和速度,这个还是很难的;二是个比较简单的结合方式,门槛也不太高。 SevenX Ventures-Yuxing:其实数据是AI的养料。Web3的数据公开且可验证,而AI的问题在于它的黑盒特性,难以验证。这两者结合,可以产生一些有趣的化学反应。目前我更倾向于把AI和Web3的结合分为两类,不是简单的AI加Web3数据,而是考虑AI如何让Web3变得更好,以及Web3如何让AI变得更好。 首先AI对于Web3数据来说,能够有效利用Web3数据公开可验证的特性。任何AI都可以使用Web3数据,提炼并产生价值,无论是投资建议还是预警分析,AI能够帮助Web3数据处理和分析增加效率。另一方面,Web3可以增加AI的可信度,因为Web3本身就是一个新型的信任机制。通过Web3的数据公开可验证的特性,可以提高AI的透明度,甚至在新闻报道或纪实等重要领域,可以用Web3的方式存储关键信息,这就能够去避免AI存在的一些问题。 而这些问题中比较常见的就是AI的造假问题,还有AI黑盒问题。AI的算法有些可能比较容易理解,但是有的算法很难解释,比如像神经网络这样复杂的算法,还有GPT,人们可能会质疑他的答案是如何产生的,它的数据和算法都不够透明,让人感觉像是魔术。例如,之前的人脸识别算法将黑人错误识别成大猩猩,这是因为其数据样本中黑人的图片太少。 如果AI模型使用的数据都是可验证的,我们就可以更容易辨别数据是否有样本偏差。使用Web3的数据,因为其透明性,整个AI模型的训练源和结果都会更加明晰。这样一来,我们就能更公正地看待AI,理解它的决策源,减少偏见和错误。 黑盒问题可以粗略分为两部分。一部分是模型算法本身的黑盒,包括模型怎么训练,内容怎么生成,不论从训练过程还是算法机制层面都存在不透明或不可解释。另一部分是数据的黑盒,不公开数据,训练集的问题也会导致最终结果偏差。 这个偏差如果说是内容准确性上的问题,我们还可以去持续改善,但如果是一些意识形态方面的问题,尤其是政治或种族歧视等方面的问题,可能就不容易纠正了。这种时候就只能去把控数据输出了,比如现在很多国家系统或国企系统的 AI 模型,它最重要的一点就是去控制它的输出,什么不能讲,这个是最难做的,这一定程度上跟刚刚的这个意识形态偏差是类似的。 Qiming Venture Partners-唐弈:对于AI和Web3数据结合方面,我个人认为,AI在这个领域可能有些许炒作,噱头大于实际效用。因为从我看来,Crypto的数据产品还处于相对早期阶段,在数据方面的基础工作还不够扎实。在这种情况下,过早地引入AI或过多的数据分析可能为时过早。 此外,从用户角度来看,大部分加密项目和AI结合的场景并不太成立,或者说用不太到AI。因为这波比较火的AI模型,特别是生成模型,是建立在大规模互联网数据的基础上的,比如语言处理和图像生成等能力。尽管有人利用生成式AI改进用户体验,提供更好的交互和对话感,但这对于大多数场景而言可能价值有限。我认为如果谈论更广泛的AI(数据分析能力或更简单的AI模型)可能还有些场景,比如基于数据给NFT进行价格估算,或者专业的交易团队可以利用数据执行一些交易操作。总体而言,对于目前这波AI浪潮,我暂时还没有看到可以为加密货币产业带来特别短期效益的机会。 当然,我也看了一些早期项目正在尝试通过AI提高数据处理或分析方面的能力。举个例子,我看到早期项目正在使用AI能力来解释智能合约的逻辑或进行分类识别等工作。这些工作在智能合约和加密货币领域要求较高的准确性,因为涉及到交易等关键动作。因此,我可以想象,使用一些AI能力来进行数据预处理可能是有意义的,但最终可能仍需要人工干预来确保准确性。如果您希望通过AI能力直接触发交易,除了专业的交易者外,我认为产品方面还需要取得很大进展。 Matrix Partners-子熹:我们观察了很多关于Web3的数据项目,比如我们投资了Footprint,起初我也是它的一个忠实用户,另外还有Dune。Footprint和Dune我觉得主要针对VC、开发者以及一些小型企业的服务,真正的普通和这些服务的联系并不大。 另外我们也看了一些与加密货币交易或者盈利直接相关的数据分析公司,像Nanson、defilama、token terminal、dappradar,当然还包括Dune和Footprint。这些公司对VC和开发者来说非常有用,但它们的盈利能力似乎有限。原因在于目前VC和开发者对这些数据的总体需求量还不够大,而且他们的付费意愿也不强,因为即便某些服务不是免费的,也总有其他公司提供类似的免费服务。 我们还看了一些类似于数据云仓的公司。我们也和腾讯领投了Chainbase。他们其实就像是一个数据平台,他们提供安全类、交易类、NFT类、DeFi类、游戏类、社交类数据,还有一些综合性的数据。开发者可以在这些平台上组合这些数据来生成自己所需的API。 在熊市中,我们注意到像Chainbase、Blocksec、footprint这样的公司,它们的很多客户实际上是中小型创业公司。例如Chainbase,它的一些大客户收入并没有下降,但是中小型客户的收入在两三个月后就降为零了。这表明这些项目因为缺乏资金而无法继续。 因此,对于数据提供商来说,熊市中若没有新的开发者加入,他们就很难赚钱。这也反映出目前在Web3领域,数据提供商主要是靠那些认为数据有用的开发者和小型企业,他们并内部整合这些数据,然后再进行变现,平衡收入和产出。 核心我们还是觉得,目前无论是ToC还是ToB的Web3数据公司盈利模式都不是很清晰,这导致数据提供商没有一个强大的稳定的现金流。尤其是对于那些中小型的创业者来说,这是我们觉得目前Web3数据行业最大的一个弊端。 然后再回到AI和Web数据结合的话题。我们最近也看了和投资了一些AI相关的数据公司。我觉得AI数据公司实际上也面临着同样的问题,就是数据的销售。你需要考虑客户的成本和他们产出的效果之间的平衡。目前来看,我对AI数据公司的盈利前景还是比较乐观的,但这主要限于海外市场。 如果只瞄准国内市场,我担心最终的结果可能会和投资Web2 SaaS公司一样,可能有收入,业务规模不会太大,客户的付费意愿也不是很强。你可能还需要提供定制服务,这样你的毛利率也不会很高。所以我对在国内做这个是比较悲观的,对在海外做这个是比较乐观的。 您认为AI 能够给Web3 数据基础设施和Web3数据公司带来哪些价值?现在利用AI帮助Web3数据的项目效果怎么样呢?在商业模式方面是否能有些创新? SevenX Ventures:我认为AI对Web3数据最大的帮助是效率方面。比如Dune发布了AI大模型的工具来做代码异常检测和信息索引,用户可以去用自然语言去查询相应的数据,它的代码就会相应地进行生成,然后还可以去做代码的优化,这个就是效率方面的一个提升。 另外还有用AI做安全预警的项目,它就是将 AI经过相应的训练之后,可以去快速的去识别安全问题的一个 AI Robot。比如 AI 算法里边就有一个算法叫异常检测,效果比从纯数学统计的方法直接去看数据的分布,检测出一个异常值要更好,所以这种 AI 可以更有效地去做安全方面的监测。 另外我还有看到一些项目使用AI算法,比如大语言模型来检索整个Web3的新闻数据(不只是链上数据),进行信息聚合和舆情分析,形成一个AI Agent。比如用户可以直接在对话框里面去查某个代币最近30 天或者 90 天的网络舆情,用户是更偏向于看多,还是看空,给予相应的分值来体现热度;它还会有个曲线,通过这个曲线就可以判断一个代币它是在大家讨论到顶峰的时刻,还是在一个顶峰下降的时刻,还是在一个上升的时刻?这些可以辅助用户投资,我觉得也是一个挺有意思的应用方式。 但也有些其他的项目宣称自己的数据是AI的数据源蹭 AI 概念,我觉得这有点牵强,因为任何链上数据都可以是AI的数据源,因为它是公开的,所以有点蹭热点的嫌疑。 Matrix Partners-子熹:商业模式是现在数据领域的一个大问题,要找到一个解决方案很难。可能在ToC端,利用Web3的一些概念,比如token或分布式概念,可以让AI数据采用不同的商业模式。但如果是AI技术赋能数据,目前并没有太多亮点。 AI在数据处理和清洗方面可能有辅助作用,但这更多是内部的帮助,比如在产品开发过程中提升功能或用户体验。但从商业角度来说,并没有太大改变。 AI bot确实可以增加一些竞争力,辅助用户,但目前来说这不是一个很大的优势点,核心竞争力还是取决于数据源的质量。如果数据源充足,我可以获取我需要的信息。问题是,如果这些数据要商业化,那么我组合出来的东西必须能变现,我才愿意为数据支付费用。现在的问题是,市场不好,初创公司不知道如何变现数据,也没有足够的新进场初创公司。 我觉得目前有意思的反而是一些Web2的公司,它们使用了Web3的技术。比如一个合成数据的公司,他们通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI 大模型训练使用。他们在处理数据的时候涉及到很多隐私部署的问题,使用了Oasis区块链,可以有效避免了数据隐私问题。后面他们还想做一个数据交易所,将合成的数据包装在NFT里进行买卖,解决确权和隐私问题。我觉得这是一个很好的思路,它用Web3技术来辅助Web2解决问题,不一定局限于Web3的公司。不过,目前合成数据的市场还不够大,早期投资这样的公司有风险。如果下游市场做不起来,或者竞争对手太多,情况也会很尴尬。 在AI+Web3数据的领域,有没有投过一些比较好的项目,分别是什么方向的,决定投他们的关键因素是什么?您认为这类项目的核心竞争力是什么?AI是否会加强这个竞争力? Hashkey Capital-Harper:我们投的数据项目比较早,基本都是还没有特别强调ai的时候就投了,比如space and time、0xscope、mind network、zettablock等,投的关键是看他们的定位和数据质量。现在这些项目都会有AI的计划,基本也是先从聊天agent开始。space and time和chainML合作推出了创建ai agent的基础设施,其中创建的defi agent被用于space and time,也是一种结合AI的方式。 SevenX Ventures-Yuxing:如果项目与AI的结合做得很好,那么我可能会对其更感兴趣。决定我是否会投资的关键因素之一是项目是否有市场壁垒。我观察到很多项目宣称他们与AI结合能够提升效率,例如快速的数据查询功能。有些项目可以通过自然语言查询来快速获取链上NFT数据,比如查询最近交易最活跃的十大NFT。这样的项目可能有先发优势,但市场壁垒可能并不牢固。 真正的壁垒是AI本身的应用以及工程师如何将AI应用到具体场景中。工程师如果能熟练地进行模型微调,通常能够获得良好的效果。对于那些提升效率的项目来说,市场壁垒主要在于数据源。不仅仅是链上数据,还包括项目方如何处理和解析这些数据。例如之前提到的项目,它们能够通过AI算法快速检索重要数据。然而,工程师进行模型微调的效果是有限的,真正的持续优势在于数据源的质量和其持续优化的能力。这也是为什么一些数据分析公司能够在市场中脱颖而出的原因,他们不仅提供数据源,还包括数据处理和分析的能力,区别往往在于团队的技术能力和人才。这些因素直接关系到AI结合应用的最终效果, 另外,我也关注那些能让AI变得更好的Web3技术项目,因为AI市场非常庞大。如果Web3技术能够增强AI的能力,那么应用场景将会非常广泛。这就是ZKML项目受到热捧的原因。但是,我注意到Web3项目往往容易被夸大或贬低其价值。像ZKML这样的项目,尽管备受关注,但它们的投资回报并不像人们期待的那样迅速,退出机制也并不清晰,因为它们发行代币的难度较大。因此,尽管这些项目富有创意并具有潜在价值,但是否值得现在投资,以及它们最终能带来多少回报,是投资者需要仔细考量的。 Matrix Partners-子熹:我们投资了一个结合AI和Web3的公司,它是一个数据标注公司,叫Questlab。他们使用区块链技术提供数据标注的众包服务。数据标注原本是一个直营或者是分包的行业,很难做到知识领域的全覆盖。 就传统的数据标注来说,一般分为三个类型:直营、分包和众包。但实际上做众包的人比较少。这三种模式的公司在选择数据标注服务时需要考虑的因素有:价格是否便宜、标注的质量是否高、效率如何。还有一个就是能否覆盖他们所在的行业。如果你只是做一些通用模型的语言或图片的标注,其实很简单,就是识别英文字或图片。再难一点,比如需要区分猫、狗、月亮、婴儿车等,这也不是很难。但如果你需要做的是更专业的标注,比如语音机器人社区需要的标注,那就复杂多了。他们可能需要标注各种方言和多种语言,包括中文方言,英文方言、以及各种小众地区的语言等,很少有传统的工作室愿意做这样的工作。 一个更复杂的例子是法律加AI公司,需要标注大量的法律知识来训练各种模型,要找到既懂法律又能进行专业标注的人非常难,需要同时懂得各国法律,还要了解各种专业法律领域,如合同法、租赁法、民法、刑法等。市场上几乎没有一家数据标注公司能够提供如此专业的服务。法律是专业的,金融、生物、医疗、教育等也是如此。所以,这些领域的标注工作一般只能由内部团队来完成,他们使用众包的方法,这样就能解决知识专业覆盖的问题。 我们认为,利用区块链进行众包是一个很好的方向,就像YGG在Gamefi领域做的事一样。这是我们认为是一个有前景的方向。 另外,我们觉得在开源模型社区里面,也会有一些很好的机会。比如Polychain投的一个项目是一个类似于web3 的hugging face,用来解决模型内容创造者经济的问题。 其他的AI和Web3的结合,我觉得ToC方向如果能结合一些token的玩法,提高整个社群的粘性、日活和情感,我们觉得这是可行的。这也方便投资人来变现,但是市场规模如何也不是很确定。这就是我对AI和Web3的一些看法。我觉得如果纯ToB的业务,没必要用Web3,就用Web2的方式做就挺好的。 Qiming Venture Partners-唐弈:目前我们投的有一些数据项目正在通过链上数据在安全场景中进行工作。我认为一些AI基本的模式识别或特征发现工作都有涉及,并且效果还可以。然而,更高级的工作,如将大量活动数据输入模型并识别多种信息,目前仍在尝试阶段,效果尚需验证。除了安全领域外,许多其他领域也存在类似情况。 最近的一个例子是我们投的NFTGo,它是一个基于大数据分析去做NFT的定价,具有一定的准确性,并计划将其用于价格Oracle等用途。虽然这一体系听起来很有趣,但在产品中以及用户接受程度方面,仍需要进行验证。因为即使目前可能能够达到90分或85分的准确性,用户可能需要更高水平,比如98分或95分,因此还需要进一步验证。因此,虽然一些项目正在将数据分析和模式识别等简单AI能力应用于产品中,但是否成为关键因素尚未得到验证。 而对于投资意愿方面,我个人不会因为项目有一些AI的噱头就更倾向于投资,因为我认为实际效果和项目是否能实现其目标以及带来好处更为重要。如果一个项目只是在名字或市场营销上有亮点,作为一种营销手段,以吸引更多关注或曝光,我能理解。但在投资决策中,我认为更重要的是实际效果。 像一些项目在做ZKML,这个赛道似乎备受瞩目,但是同时也有很大问题,就是它到底用于什么场景。我觉得目前不确定性特别强烈,更多还是很宏大的叙事。 从整体行业发展来看,AI + Web3数据这一赛道未来有哪些潜在的机会或发展方向?未来,AI是否有可能彻底升级数据产品,引入新概念?是否会增强用户的付费意愿? Hashkey Capital-Harper:肯定是有潜在机会的。未来发展方向其实还是落后于web2 的AI,那里的创造力明显更强,web3这边的AI大概率也是web2 AI的映射实现吧。 Matrix Partners-子熹: 我觉得最近的妙鸭相机让大家意识到,其实人们对AI产品还是有付费的意愿的,这不像传统的SaaS产品或游戏,人们期望免费才会使用。用户对AI的付费意愿其实还是挺强的。 未来的话我可以提供一点想法。我们在做数据标注流程中有一个关键步骤叫做预标注,就是我们训练一个模型,让模型来进行初级标注。这一步非常有价值,可以节约很多人力成本。我们将原始数据投入预训练的模型进行预标注,然后进行半自动化的数据处理,最终手动进行精确标注。预标注可以显著提高效率,可能原本需要100人的工作,现在可能只需要50到70人。 另外预标注方面也涉及到AI和人的协作,通过你的反馈可以不断提高模型的预标注能力,从而减少数据标注团队的人数需求。随着AI和人的协作越来越好,原本100人的团队可能只需要30人。但是,这个过程有一个下限,即使AI协作做得非常好,仍然需要一定数量的人工进行最终的标注和审核。 在其他领域由于我不是数据科学家,我没有亲自清洗过数据或使用数据进行SQL查询,所以我不清楚AI在这些领域具体能提供多大的帮助。 Qiming Venture Partners-唐弈:我觉得长期内与Web3和AI是应该有一些交集的。比如从意识形态的角度,Web3的价值体系是可以结合到AI上的,很适合作为bot的账号体系或者说价值转化体系。想象一下,一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。这些概念有点科幻,实际应用可能还有很长的路要走。 第二个可能的方向验证AI模型的输出是否基于特定类别或特定的模型,或者特定的数据,并且是否可信。这些领域在可信的AI模型中可能有一些用处。从技术角度来看这些非常有趣,但是否有足够的市场需求尚不确定。 另外一方面是AI的出现使数据内容生成变得泛滥和廉价。对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权可能需要一个全新的体系,包括创作者和智能体的角色。但总的来说,这些问题可能仍然有待解决,而故事性的内容可能需要更长的时间来发展。在短期内,我们应该继续关注数据底层的质量,并期待模型能够变得更强大。 另外在商业化方面,确实数据产品商业化非常难。但是我认为从商业角度来看,AI可能短期内不是解决数据产品商业化问题的解决方案。商业化需要更多的产品化努力,而不仅仅是数据化能力。因此,这些项目可能需要开发其他产品来实现商业化。 来源:金色财经
lg
...
金色财经
2023-12-06
深圳印发算力基础设施高质量发展行动计划,算力产业迎来持续催化,三个维度掘金
go
lg
...
重要数据灾备覆盖率达到100%等。 以
ChatGPT
为代表的AI技术快速发展,对算力的需求呈现爆发式增长,IDC预测,2022-2027年中国智能算力规模年复合增长高达33.9%。目前,算力基础设施已成为AI行业亟需布局的资源。今年以来加快建设算力基础设施相关政策接连落地,从顶层设计到地方发展规划相继出台,产业利好催化不断。未来随着云计算下游需求回暖和国内AI算力基础设施建设工作稳步推进,国内算力基础设施产业链值得持续关注。 华龙证券建议从三个维度掘金,建议关注: 1)开展算力服务的厂商: 中贝通信、莲花健康、恒润股份、汇纳科技、鸿博股份; 2)具备国产芯片 IP 设计能力的厂商: 寒武纪、海光信息、芯原股份; 3)具备云服务能力的厂商: 中科曙光、浪潮信息、紫光股份、神州数码; 4)芯片封测厂商: 长电科技、通富微电、华天科技。
lg
...
金融界
2023-12-06
麦肯锡:人工智能可为华尔街带来每年高达3400亿美元利润
go
lg
...
年开始流行起来,当时OpenAI发布了
ChatGPT
工具,可以根据简单的提示为用户生成句子、摘要甚至诗歌。 根据麦肯锡对63个行业用例的研究,这样的工具最终可能会接管大多数人类工作人员的重复性任务。麦肯锡高级合伙人Gokhan Sari在接受采访时表示,虽然最初的效率将在公司内部实现,而且部署的时间框架尚不清楚,但金融行业可以预期未来向人工智能的转变将更多在面向客户的层面。 麦肯锡高级合伙人Jared Moon表示,销售和市场营销、软件工程和呼叫中心这些职位最有可能受到影响。Moon补充说,多达70%的业务活动将有自动化的部分,导致只有“非常小的一部分”工作不受影响。 “他们在利用生产力的提高来更快地执行代码、为客户编写更好的内容,从而腾出时间与客户打交道,” 他说。虽然他还没有看到公司使用人工智能来“大幅裁员”,但随着时间的推移,裁员问题仍未定论。
lg
...
金融界
2023-12-06
上一页
1
•••
267
268
269
270
271
•••
763
下一页
24小时热点
中国经济重大信号!英国金融时报深度:中美贸易战加剧中国经济强省的下滑
lg
...
历史或在50年后重演?从尼克松到特朗普:干预央行的代价,美国能承受吗?
lg
...
中美突发重磅!华尔街日报独家:中国高级代表本周赴美 开启新一轮贸易谈判
lg
...
中国最新数据出炉!7月工业利润连续第三个月下滑 北京恐出台更多刺激?
lg
...
【黄金收评】特朗普突然惊人举动点燃避险!黄金多头爆发 金价飙升28美元
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#链界盛会#
lg
...
114讨论
#VIP会员尊享#
lg
...
1989讨论
#CES 2025国际消费电子展#
lg
...
21讨论