全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
ChatGPT 周年纪念反思:AIGC的瓶颈与Web3的机遇
go
lg
...
打开了一个绝佳的切入点。现有的人工智能
大
模型
或基础模型是在来自各个领域的海量数据上进行训练的,而Web3中链上数据的独特性使链上数据模型成为一个令人兴奋且可行的途径。 在Web3中,数据层面目前有两种产品逻辑:第一种激励数据提供者,鼓励用户共享数据使用权,同时保护数据的隐私和所有权。海洋协议在这方面提供了有效的数据共享模型。第二种方法涉及集成数据和应用程序的项目,以便为用户提供特定于任务的服务。例如,Trusta Lab收集和分析用户的链上数据,并通过其独特的MEDIA评分系统,提供女巫账户分析、链上资产风险分析等服务。 2.3.2 AI Agent在Web3中的应用 如前所述,链上人工智能代理的应用正在蓬勃发展。借助大型语言模型并优先考虑用户隐私,他们提供可量化的链上服务。根据 OpenAI 首席人工智能研究员 Lilian Weng 的博客文章,人工智能代理可以分为四个部分:代理 = LLM(大型语言模型)+ 规划 + 内存 + 工具使用。 LLM作为AI Agent的核心,处理外部交互,从大量数据中学习,并用自然语言进行逻辑表达。规划+记忆方面类似于用于训练 AlphaGo 的强化学习技术中的行动、策略和奖励概念。 它涉及将任务分解为更小的目标,并通过重复训练和反馈来学习最优解决方案,根据功能将信息存储在各种类型的记忆中。工具使用是指智能体利用模块化工具、互联网信息检索、访问专有信息源或API等工具的能力。值得注意的是,大多数这些信息在预训练后很难修改。 考虑到AI Agent的这种逻辑,我们可以设想Web3和AI Agent结合的无限可能性。例如: 在目前的交易应用中,集成AI Agent模型可以为客户提供自然语言界面,提供包括价格预测、交易策略、止损策略、动态杠杆调整、智能跟随意见领袖、借贷等多种交易功能。 在执行量化策略时,策略可以进一步分解为子任务,分配给不同的AI Agent来执行。协作人工智能代理可以增强隐私保护并实现实时监控,以防止被对手利用。 基于区块链的游戏中的许多 NPC自然而然地与 AI 代理保持一致。已经有项目应用GPT来动态生成游戏角色对话。未来的发展可能会超越预设文本,创建更真实的实时 NPC(甚至数字人)交互,并且独立于玩家干预进行操作。斯坦福大学的“虚拟小镇”就是此类应用的一个很好的例子。 尽管目前的Web3+AI Agent项目主要集中在初级市场或AI基础设施,尚未出现杀手级消费应用程序,但改变游戏规则的Web3+AI项目的潜力是巨大的。通过集成分布式链上治理、零知识证明推理、模型分布和改进的可解释性等各种区块链特性,这些项目在未来具有广阔的前景。 2.3.3 Web3+AI潜在垂直领域应用 A. 教育领域的应用 Web3 和人工智能的融合预示着教育领域的一场革命,其中生成式虚拟现实教室是一项值得注意的创新。将人工智能技术嵌入在线学习平台,学生可以获得个性化的学习体验。该系统根据每个学生的学习历史和兴趣生成定制的教育内容。这种个性化的方法有望提高学生的学习动机和效率,使教育更加个性化。 此外,基于代币的信用激励代表了教育领域的创新实践。利用区块链技术,学生的学分和成绩可以编码成代币,形成数字化的学分体系。这种激励机制鼓励积极参与学习活动,创造一个更具吸引力和激励性的学习环境。 受最近流行的SocialFi项目FriendTech的启发,类似的关键定价逻辑可以应用于在学生之间建立同行评审系统,为教育添加更多社交元素。利用区块链的不可篡改性,同行评价变得更加公平和透明。这种同行评审机制不仅有利于培养学生的团队合作能力,而且可以对学生的表现进行更全面、多维度的评估,将多元化、整体性的评价方式引入教育体系。 B. 在医疗领域的应用 在医疗领域,Web3与AI的融合推进了联邦学习和分布式推理。通过将分布式计算与机器学习相结合,医疗专业人员可以大规模共享数据,从而实现更深入、更全面的群体学习。这种集体智慧方法可以加速疾病诊断和治疗计划的制定,推动医学领域的进步。 隐私保护也是医疗领域应用的一个重要方面。借助Web3的去中心化和区块链的不变性,患者医疗数据可以更安全地存储和传输。智能合约可以实现对医疗数据的精确控制和权限管理,确保只有授权人员才能访问敏感的患者信息,从而维护医疗数据的隐私。 C. 保险领域的应用 在保险行业,Web3与AI的融合有望为传统运营带来更加高效、智能的解决方案。例如,在汽车和房屋保险中,计算机视觉技术的应用帮助保险公司通过图像分析和评估更有效地评估财产价值和风险水平。这为保险公司提供了更加精细化、个性化的定价策略,增强了保险行业的风险管理。 同时,链上自动化索赔处理是保险行业的一项创新进步。利用智能合约和区块链技术,索赔流程变得更加透明和高效,减少了繁琐的程序和人为干预的可能性。这不仅加快了理赔流程,还降低了运营成本,为保险公司和客户提供更好的体验。 动态保费调整是另一个创新领域。通过实时数据分析和机器学习算法,保险公司可以更加精准、及时地调整保费,根据被保险人的实际风险状况进行个性化定价。这种做法不仅使保费更加公平,而且鼓励被保险人采取更健康、更安全的行为,促进全社会的风险管理和预防措施。 D. 版权领域的应用 在版权领域,Web3 和人工智能的结合为数字内容创建、管理和代码开发引入了新的范式。通过智能合约和去中心化存储,数字内容的版权信息可以得到更好的保护,让创作者更轻松地追踪和管理自己的知识产权。区块链技术还可以建立透明且不可变的创作记录,为追踪和验证作品提供更可靠的手段。 工作模式的创新也代表着版权领域的重大转变。代币激励的协作工作将工作贡献与代币奖励相结合,鼓励创作者、策展人和开发者共同参与项目。这不仅促进了创意团队之间的协作,也让参与者有机会直接从项目的成功中受益,从而催生更多优秀作品。 另一方面,使用代币作为版权证明重塑了利益分配模式。通过智能合约自动执行的分红机制,作品的所有参与者都可以在作品被使用、出售或转让时实时获得自己的收益份额。这种去中心化的利益分配模式有效解决了传统版权模式中的不透明和延迟问题,为创作者提供了更加公平、高效的利益分配机制。 E. 虚拟宇宙领域的应用 在元宇宙中,Web3与AI的融合为创建低成本AIGC以丰富基于区块链的游戏内容开辟了新的可能性。AI生成的虚拟环境和角色可以丰富游戏内容,为用户提供更加生动多样的体验,同时减少制作的人力和时间成本。 创建生动的数字人是元宇宙应用的创新。数字人类具有细到头发的详细物理外观和 基于大型语言模型构建的心理逻辑,可以在元宇宙中扮演各种角色。他们可以与用户交互,甚至参与现实世界场景的数字孪生。这为虚拟现实提供了更加真实、深刻的体验,推动数字人技术在娱乐、教育等领域的广泛应用。 基于区块链用户画像自动生成广告内容是元宇宙中的智能广告应用。通过分析用户在元宇宙中的行为和偏好,人工智能算法可以创建更加个性化和有吸引力的广告,从而提高点击率和用户参与度。这种广告创作方式不仅更符合用户兴趣,也为广告主提供了更高效的推广渠道。 生成式交互式 NFT是元宇宙中一项引人注目的技术。通过将NFT与生成设计相结合,用户可以在元宇宙中参与创作自己的NFT艺术品,赋予其互动性和独特性。这为数字资产的创造和交易开辟了新的可能性,推动了虚拟宇宙中数字艺术和虚拟经济的发展。 三.签名 Web3 协议 在本节中,作者选择了五个具有代表性的协议来深入了解 Web3 领域中生成式 AI 的现状:Render Network和Akash Network被强调为通用 AI 基础设施协议和 Web3 中 AI 类别的领先者;Bittensor被认定为当前模型训练领域的热门项目;Alethea.ai因其与生成式 AI 应用程序的密切相关性而被选中;Fetch.ai展示了人工智能代理在去中心化Web3世界中的潜力。 3.1 渲染网络($RNDR) Render Network 由母公司 OTOY 的创始人 Jules Urbach 于 2017 年创立。OTOY 的核心业务是基于云的图形渲染,由 Google 和 Mozilla 联合创始人提供建议,为奥斯卡获奖电影项目做出了贡献,并与 Apple 进行了项目合作。 Render Network 是 OTOY 进军 Web3 领域的举措,旨在利用区块链的分布式特性,将小规模渲染和人工智能需求与去中心化资源连接起来。这一举措旨在为小型工作室节省成本,否则这些小型工作室将租用昂贵的集中式计算资源(例如AWS、MS Azure和阿里云),并为那些拥有闲置计算资源的人提供创收机会。 在发布专有渲染器 Octane Render 的 OTOY 的支持下,Render Network 凭借固有的需求和扎实的商业模式推出,很快被认为是一个具有坚实基础和潜力的 Web3 项目。 随着生成式AI的兴起,分布式验证和推理任务的需求不断增加,与Render的技术架构完美契合,使其成为未来发展的一个有希望的方向。Render 一直引领着 Web3 领域的 AI 赛道,演变成一个有点像 meme 的实体,每当围绕 AI、元宇宙和分布式计算的叙述升温时,它都会受益于上升趋势,展示了它的多功能性。 2023 年 2 月,Render Network 宣布了更新其定价等级系统的路线图,并为 $RNDR 引入了社区投票的价格稳定机制(尽管发布日期尚未公布)。该项目还宣布从 Polygon 迁移到 Solana(将 $RNDR 代币升级为基于 Solana SPL 的 $RENDER 代币,已于 2023 年 11 月完成)。 渲染网络的新定价体系将链上服务分为三个级别,从高到低,每个级别对应不同的价格点和渲染服务质量。这些层根据客户的特定渲染需求为客户提供选择。 社区投票的$RNDR价格稳定机制已从不定期回购转变为“销毁和铸币均衡(BME)”模式。这一变化强调 $RNDR 作为交易的稳定币,而不是长期持有资产。一个BME Epoch的具体业务流程如下: 产品创建:Render上的产品创建者,即渲染资源的提供者,将闲置的渲染资源打包成产品(节点)并上线,等待使用。 购买产品:有渲染需求的客户可以直接销毁$RNDR代币作为服务费用。如果他们没有 $RNDR 代币,他们首先用法定货币在 DEX 上购买它们,然后销毁代币。服务支付的价格公开记录在区块链上。 铸造代币:根据预设规则铸造新代币。 注:Render Network 收取产品购买者支付的项目运营交易费用的 5%。 在每个 BME Epoch 中,都会铸造预设数量的新代币(数量会随着时间的推移而减少)。这些新代币被分发给三方: 产品创造者:他们获得的奖励是: A。任务完成:根据各产品节点完成的渲染任务数量进行奖励。 b. 在线奖励:鼓励资源提供者在线完成任务,根据市场待机时间给予奖励。 2. 产品购买者:与购物中心的产品优惠券返还类似,购买者可以获得高达 100% 的 $RNDR 代币返还,鼓励未来使用 Render Network。 3. DEX 流动性提供商:合作 DEX 中的提供商,确保以合理的价格提供 $RNDR 代币以进行必要的销毁,将根据质押的 $RNDR 数量获得奖励。 从过去一年$RNDR的价格走势来看,作为Web3中领先的AI赛道项目,$RNDR受益于ChatGPT在2022年底和2023年初带动的AI热潮。随着新代币机制的引入,$RNDR的价格2023年上半年达到顶峰。 经过一段时间的稳定后,随着 OpenAI 新版本引发的 AI 复苏、Render Network 向 Solana 的迁移以及新代币机制的预期实施,$RNDR 的价格达到了近期高点。鉴于 $RNDR 的基本面变化很小,未来对 $RNDR 的投资需要谨慎的头寸管理和风险控制。 Dune Analytics仪表板的数据表明,自2023年初以来,渲染任务总数有所增加,但渲染节点数量并未增加。这表明导致工作负载增加的新用户是那些有渲染需求的用户,而不是那些提供渲染资源的用户。 鉴于生成式 AI 到 2022 年底将激增,有理由推断额外的渲染任务与生成式 AI 应用程序相关。这种需求的增加是代表长期趋势还是暂时的激增还有待观察,需要进一步观察。 3.2 Akash Network($AKT) Akash Network 是一个去中心化的云计算平台,旨在为开发者和企业提供更灵活、高效、更具成本效益的云计算解决方案。 该项目的“超级云”平台基于分布式区块链技术,利用区块链去中心化的特性,为用户提供全球性、去中心化的云基础设施,包括CPU、GPU、存储等多样化的计算资源。 Akash Network 由拥有丰富项目背景、经验丰富的企业家 Greg Osuri 和 Adam Bozanich 创立,其使命很明确:降低云计算成本、提高可用性并让用户更好地控制计算资源。通过激励提供商通过竞价流程开放闲置计算资源,Akash Network 实现了更有效的资源利用,为资源需求者提供有竞争力的价格。 2023 年 1 月,Akash Network 启动了 Akash Network Economics 2.0 更新,以解决当前代币经济中的各种缺陷,包括: $AKT 市场价格的波动导致长期合同价格和价值的不匹配。 对资源提供者释放大量算力的激励不足。 社区激励措施不足阻碍了项目的长期发展。 $AKT 的价值捕获不足对项目稳定性构成风险。 据官网介绍,Akash网络经济2.0计划中提出的解决方案包括引入稳定币支付、增加订单费用以增加协议收入、增强对资源提供者的激励以及增加社区激励等。值得注意的是,稳定币支付功能和订单费用功能已经实现。 作为 Akash 网络的原生代币,$AKT 在协议中具有多种用途,包括用于验证(安全)、激励、网络治理和支付交易费用的质押。据官网显示,$AKT 的总供应量上限为 3.88 亿枚,截至 2023 年 11 月,已解锁约 2.29 亿枚(59%)。项目启动时分配的创世代币于2023年3月完全解锁并进入二级市场。创世代币的分配如下: 关于价值获取,白皮书中提到的一个值得注意的尚未实施的功能是 Akash 计划对每一次成功的租赁收取“费用”。这些费用将被发送到收入池以分配给持有人。 该计划规定对 AKT 交易收取 10% 的费用,对使用其他加密货币的交易收取 20% 的费用。此外,Akash 打算奖励长期锁定 AKT 持有量的持有者,从而激励长期投资。 CoinGecko 的价格趋势显示,$AKT 在 2023 年 8 月中旬和 11 月下旬经历了上涨,尽管涨幅不如人工智能领域的其他项目,这可能是由于当前的市场情绪所致。 总体而言,Akash Network 是 AI 赛道上为数不多的优质项目之一,其基本面优于大多数竞争对手。其潜在的业务收入可以为该协议带来未来的盈利能力,随着人工智能行业的发展和对云计算资源的需求不断增加,Akash Network 有望在下一波人工智能浪潮中取得重大进展。 3.3 Bittensor($TAO) 对于那些熟悉 $BTC 技术架构的人来说,理解 Bittensor 的设计非常简单。事实上,在设计 Bittensor 时,其创建者从加密货币先驱 $BTC 的几个特征中汲取了灵感。 其中包括总代币供应量为 2100 万枚,大约每四年产量减半,并涉及工作量证明 (PoW) 共识机制等。 为了将其概念化,想象一下最初的比特币生产过程,然后用训练和验证人工智能模型来取代计算密集型的“挖矿”过程,该过程不会创造现实世界的价值。矿工根据人工智能模型的性能和可靠性获得激励。这形成了 Bittensor ($TAO) 项目架构的简单总结。 Bittensor 由人工智能研究人员 Jacob Steeves 和 Ala Shaabana 于 2019 年根据神秘作者 Yuma Rao 撰写的白皮书成立。简而言之,它是一个开源、无需许可的协议,创建了一个由许多子网络连接的网络架构,每个子网络负责不同的任务(机器翻译、图像识别和生成、大型语言模型等)。优秀的任务完成会受到奖励,并且子网络可以相互交互和学习。 就目前主要的人工智能模型而言,都是科技巨头大量计算资源和数据投资的结果。这些AI产品表现出色的同时,这种方式也带来了很高的中心化风险。 Bittensor 的基础架构允许交流专家网络进行交互和相互学习,为大规模模型的去中心化训练奠定了基础。Bittensor 的长期愿景是与 OpenAI、Meta 和 Google 等巨头的闭源模型竞争,保持去中心化特征,同时渴望与它们的推理性能相匹配。 Bittensor的技术核心是Yuma Rao独特设计的共识机制,也称为Yuma Consensus,它混合了PoW和Proof of Stake(PoS)的元素。供应方主要涉及“服务器”(矿工)和“验证者”(验证者),而需求方则由使用网络中模型的“客户端”(客户)组成。流程如下: 客户端将请求和数据发送给验证器进行处理。 验证者将数据分发给特定子网下的矿工。 矿工使用他们的模型和接收到的数据进行推理并返回结果。 验证者按质量对推理结果进行排名,并记录在区块链上。 最好的推理结果返回给客户端,矿工和验证者根据排名和工作量获得奖励。 值得注意的是,Bittensor 本身并不在大多数子网络中训练任何模型;它更像是模型提供者和用户之间的纽带,通过较小模型之间的交互进一步提高各种任务的性能。目前,在线有(或已经有)30个子网络,每个子网络对应不同的任务模型。 $TAO 作为 Bittensor 的原生代币,在创建子网络、在子网络中注册、支付服务费用以及向生态系统内的验证者质押方面发挥着至关重要的作用。效仿 BTC 的精神,$TAO 选择公平发布,这意味着所有代币都是通过对网络的贡献生成的。 目前,$TAO 的日产量约为 7,200 个代币,均匀分配给矿工和验证者。自项目启动以来,已生产了 2100 万枚代币中的约 26.3%,其中 87.21% 用于质押和验证。该项目还遵循 BTC 大约每四年产量减半的模式,下一次减半计划将于 2025 年 9 月 20 日举行,预计将成为重要的价格驱动因素。 从 2023 年 10 月下旬开始,$TAO 的价格趋势出现大幅上涨,这主要是受到 OpenAI 会议之后新一波人工智能热情以及资本转向人工智能领域的推动。 $TAO作为Web3+AI赛道的新项目的出现,其品质、长远的愿景也吸引了投资。但必须承认,与其他AI项目一样,Web3+AI的结合虽然潜力巨大,但尚未在实际业务中找到支撑长期盈利项目的应用。 3.4 Alethea.ai($OR) Alethea.ai 成立于 2020 年,是一个致力于利用区块链技术为生成内容带来去中心化所有权和治理的项目。 Alethea.ai 的创始人相信,生成式人工智能将带领我们进入一个由生成式内容引起的信息冗余时代,在这个时代,通过简单的复制粘贴或单击即可轻松复制或生成大量数字内容,但原创者很难获得利益。通过将区块链原语(例如 NFT)与生成式人工智能连接起来,他们的目标是确保生成式人工智能及其内容的所有权,并在此之上进行社区治理。 在这一理念的推动下,Alethea.ai最初推出了新的NFT标准iNFT,它利用Intelligence Pods将AI动画、语音合成甚至生成式AI嵌入到图像中。Alethea.ai 还与艺术家合作,利用他们的艺术品创建 iNFT,其中一件在苏富比拍卖会上以 478,000 美元的价格售出。 Alethea.ai 随后推出了 AI 协议,允许任何生成式 AI 开发者或创作者无需许可即可使用 iNFT 标准进行创作。为了展示 AI 协议,Alethea.ai 开发了 CharacterGPT,这是一种基于 GPT 等大型模型理论的工具,用于创建交互式 NFT。最近,他们发布了 Open Fusion,使得任何 ERC-721 NFT 都可以与 Intelligence 结合并发布在 AI 协议上。 Alethea.ai 的原生代币是 $ALI,它有四个主要用途: 锁定一定数量的$ALI来创建iNFT。 锁定的 $ALI 越多,情报舱的级别就越高。 $ALI 持有者参与社区治理。 $ALI 作为 iNFT 之间交互的凭证(尚无实际用例)。 从 $ALI 的用例来看,很明显,代币的价值捕获仍然主要基于叙述。过去一年的代币价格趋势证实了这一点:$ALI 受益于 ChatGPT 自 2022 年 12 月开始引领的生成式 AI 热潮。此外,当 Alethea.ai 在 6 月宣布新的 Open Fusion 功能时,引发了价格飙升。然而,除了这些情况之外,$ALI 的价格一直呈下降趋势,甚至没有像类似项目那样对 2023 年底人工智能炒作做出反应。 除了原生代币之外,Alethea.ai 的 NFT 项目(包括其官方集合)在 NFT 市场的表现也值得关注。 根据 Dune 仪表板的数据,第三方销售的 Intelligence Pods 和 Alethea.ai 的第一方 Revenants 系列在首次发布后逐渐淡出了人们的视线。作者认为,主要原因是最初的新颖性逐渐减弱,没有实质性的价值或社区参与来留住用户。 3.5 Fetch.ai($FET) Fetch.ai 是一个致力于促进人工智能 (AI) 与区块链技术融合的项目。其目标是通过结合机器学习、区块链和分布式账本技术来构建去中心化的智能经济,以支持智能代理之间的经济活动。 Fetch.ai 由英国科学家 Humayun Sheikh、Toby Simpson 和 Thomas Hain 于 2019 年创立,其创始团队拥有令人印象深刻的背景。 Humayun Sheikh 是 DeepMind 的早期投资者,Toby Simpson 曾在多家公司担任高管职务,Thomas Hain 是谢菲尔德大学人工智能领域的教授。创始人的多元化经历横跨传统IT公司、区块链明星项目、医疗、超级计算领域,为Fetch.ai提供了丰富的行业资源。 Fetch.ai的使命是建立一个由自治经济代理(AEA)和人工智能应用程序组成的去中心化网络平台,使开发人员能够通过创建自治代理来完成预设的目标导向的任务。该平台的核心技术是其独特的三层架构: 底层:基于 PoS-uD(无许可权益证明)共识机制,该基础层支持智能合约网络,促进矿工协作以及基本的机器学习训练和推理。 中间层:开放经济框架(OEF)为AEA之间交互和底层协议提供共享空间,支持AEA之间的搜索、发现和交易。 顶层:AEA 是 Fetch.ai 的核心组件。每个AEA都是一个智能代理软件,能够通过技能模块执行各种功能,执行用户预定义的任务。这些代理并不直接在区块链上运行,而是通过 OEF 与区块链和智能合约进行交互。智能代理软件可以纯粹基于软件,也可以绑定到智能手机、计算机和汽车等物理硬件。Fetch.ai 提供基于 Python 的开发套件 AEA 框架,该框架是模块化的,使开发人员能够构建他们的智能代理。 在此架构之上,Fetch.ai 推出了 Co-Learn(智能体之间共享机器学习模型)和 Metaverse(智能体云托管服务)等后续产品和服务,以支持用户在其平台上开发智能体。 关于代币,$FET 作为 Fetch.ai 的原生代币,涵盖了支付 Gas、验证质押以及在网络内购买服务等标准功能。超过90%的$FET代币已解锁,具体分配如下: 自成立以来,Fetch.ai 经历了多轮代币稀释融资,最近一次是 2023 年 3 月 29 日从 DWF Lab 获得的 3000 万美元投资。鉴于 $FET 代币不能从项目收入中获取价值,其价格动能主要依赖于项目更新和市场对人工智能领域的情绪。事实上,在两次人工智能市场繁荣的浪潮中,Fetch.ai 的价格在 2023 年初和年底经历了超过 100% 的飙升。 Fetch.ai 的发展轨迹更像是一家 Web2.0 人工智能初创公司,重点是完善其技术。它通过持续的筹款和广泛的合作寻求认可和盈利。 这种方法为未来在 Fetch.ai 上开发的应用程序留下了充足的空间,但也意味着它可能对其他区块链项目没有那么大的吸引力,从而可能限制生态系统的活力。Fetch.ai 的一位创始人甚至尝试基于 Fetch.ai 推出一个 DEX 项目 Mettalex DEX,但最终以失败告终。作为一个专注于基础设施的项目,生态系统的衰弱也阻碍了 Fetch.ai 内在价值的增长。 四.生成式人工智能的美好未来 NVIDIA首席执行官黄仁勋将生成大型模型的推出比作人工智能的“iPhone时刻”,表明人工智能角色的关键转变,高性能计算芯片成为人工智能稀缺资源的核心。 锁定Web3 AI子赛道大部分资金的AI基础设施项目仍然是投资者长期关注的焦点。随着芯片巨头逐渐升级计算能力,AI的能力将会扩展,很可能在Web3中催生更多的AI基础设施项目,甚至可能是专门为Web3中的AI训练而设计的芯片。 虽然以消费者为中心的生成式人工智能产品仍处于实验阶段,但一些工业级应用已经显示出巨大的潜力。其中一种应用是将现实世界场景转移到数字领域的“数字孪生” 。 考虑到工业数据中尚未开发的价值,NVIDIA 的元宇宙数字孪生平台将生成式 AI 定位为工业数字孪生的重要组成部分。在Web3中,包括虚拟世界、数字内容创作和现实世界资产,受人工智能影响的数字孪生将发挥重要作用。 新型交互硬件的开发也至关重要。从历史上看,计算领域的每一次硬件创新都带来了革命性的变化和机遇,比如现在无处不在的电脑鼠标或 iPhone 4 的多点触控电容屏。 Apple Vision Pro宣布将于 2024 年第一季度发布,以其令人印象深刻的演示吸引了全球关注,有望为各行业带来意想不到的变化和机遇。以快速内容制作和广泛传播而闻名的娱乐行业往往首先受益于硬件更新。这其中包括Web3的元宇宙、区块链游戏、NFT等,都是值得长期关注和研究的。 从长远来看,生成式人工智能的发展代表着量变导致质变。ChatGPT 的核心是推理问答这一长期研究的学术问题的解决方案。只有通过扩展数据和模型迭代,才达到了 GPT-4 令人印象深刻的水平。Web3中的AI应用也类似,目前正处于Web2模型适应Web3的阶段。完全基于 Web3 数据的模型尚未出现。未来富有远见的项目和致力于研究 Web3 特定问题的大量资源将为 Web3 带来自己的 ChatGPT 级杀手级应用程序。 生成式人工智能的技术基础还有很多有前景的探索途径,比如思想链技术。这项技术允许大型语言模型在多步推理方面取得重大飞跃。然而,它也凸显甚至加剧了大型模型在复杂逻辑推理方面的局限性。有兴趣的读者可以探索原作者关于Chain-of-Thought的论文。 ChatGPT之后,Web3中出现了各种以GPT为主题的项目,但简单地将GPT与智能合约结合起来并不能满足用户需求。ChatGPT 发布大约一年后,未来仍然拥有巨大的潜力。未来的产品应该从Web3用户的真实需求出发。随着Web3技术的日益成熟,生成式AI在Web3中的应用必将是广阔而令人兴奋的。 来源:金色财经
lg
...
金色财经
2024-02-18
软通动力:公司与鲲鹏计算&昇腾计算开展全方位合作
go
lg
...
软通训推一体化平台”,并与昇腾共同启动
大
模型
联合创新,深度适配不同AI应用场景。
lg
...
金融界
2024-02-18
海外AI再度加速!OpenAI、NVIDIA、微软、Google动作频频,AI基础设施需求旺盛
go
lg
...
2月16日,OpenAI发布了Sora
大
模型
,可根据用户指令生成1分钟的高清视频,能生成具有多个角色、包含特定运动的复杂场景,即能够理解和模拟运动中的物理世界。OpenAI 已经邀请了一支专业的创意人士测试,用于反馈其在专业环境中的实用性。 2月16日,Google宣布推出全新的Gemini 1.5 AI模型,采用MOE架构,可以处理128000个token的标准情境窗口。 Sora令影视业倍感惶恐? 北京时间2月16日凌晨,没有任何预告,全球明星AI创业公司OpenAI发布了文生视频模型Sora,首次由AI生成了长达1分钟的多镜头长视频,其对于真实人类世界的高模拟度画面、精细的画质、多镜头拍摄、多角度运镜,表明AI对人类世界的理解、AI生成的创造性内容又上了新台阶。 国泰君安研报指出,Sora具有三大突出亮点,一是60秒长视频,Sora可以保持视频主体与背景的高度流畅性与稳定性。二是单视频多角度镜头,Sora在一个视频内实现多角度镜头,分镜切换符合逻辑且十分流畅。三是理解真实世界的能力,Sora对于光影反射、运动方式、镜头移动等细节处理得十分优秀,极大地提升了真实感。 与目前AI视频赛道同行相比,Sora每条提示60秒的视频长度,远高于Pika Labs的3秒、Meta Emu Video的4秒和Runway公司Gen-2的18秒的视频时长。 2月16日,360创始人周鸿祎发布微博提到自己对Sora的看法,周鸿祎认为,Sora的诞生意味着AGI(通用人工智能)实现可能从10年缩短至一两年。 周鸿祎认为,科技竞争最终比拼的是让人才密度和深厚积累,“很多人说Sora的效果吊打Pika和Runway。这很正常,和创业者团队比,OpenAl这种有核心技术的公司实力还是非常强劲的。有人认为有了AI以后创业公司只需要做个体户就行,实际今天再次证明这种想法是非常可笑的。” 中国香港青年导演朱智立告诉蓝鲸财经,“它(Sora)对电影行业的影响只是一个时间问题,因为它已经把画面做到非常真实、有细节,包括一个女人在东京街头的画面,连脸上的雀斑都能做到非常真实。” 周鸿祎认为,机器能生产一个好视频,但视频的主题、脚本和分镜头策划、台词的配合,都需要人的创意,至少需要人给提示词。一个视频或者电影是由无数个60秒组成的。今天Sora可能给广告业、电影预告片、短视频行业带来巨大的颠覆,但它不一定那么快击败TikTok,更可能成为TikTok的创作工具。 AI基础设施需求旺盛 市场观点认为,2022年是影像之年,2023是声波之年,而2024是视频之年。OpenAI表示,Sora是构建世界模型的基础,未来将向实现AGI继续迈进。 中信证券表示,多模态
大
模型
算法的突破将带来自动驾驶、机器人等技术的革命性进步,持续看好本轮生成式AI浪潮对科技产业的长周期影响和改变,继续关注算力、算法、数据、应用等环节的领先厂商。 东吴证券判断,多模态是AI商业宏图的起点,有望真正为企业降本增效,且企业可将节省下来的成本用于提高产品、服务质量或者技术创新,推动生产力进一步提升;同时,也可能出现新的、空间更大的用户生成内容平台。 对于Sora的发展,算力需求旺盛。国泰君安指出,Sora模型推动AI多模态领域飞跃式发展,AI创作等相关领域将迎来深度变革,AI赋能范围进一步扩大,多模态相关的训练及推理应用也将进一步提升对算力基础设施的相关需求。 无独有偶,国盛证券也持有相同的观点,其认为,Sora依旧符合AI缩尺律(Scaling Law)OpenAI在技术文档中说明,随着训练计算量的增加,样本质量明显提高,进一步佐证了多模态时代,算力需求将成为最核心的瓶颈之一。 多模态
大
模型
拉动全球算力需求快速增长,国产AI算力迎来机会。根据南方财富网趋势选股系统数据统计,A股国产AI算力相关上市企业目前数量有52家,如国产AI算力产业链包含AI服务器零部件、服务器整机、算力租赁、数据中心等环节。AI服务器零部件公司主要包括海光信息、寒武纪、龙芯中科、景嘉微等;服务器整机公司主要包括高新发展、神州数码、拓维信息、广电运通、烽火通信、同方股份等;算力租赁公司主要包括恒润股份、云赛智联、鸿博股份等;数据中心公司主要包括奥飞数据、光环新网、宝信软件、数据港等。 天风证券发布研究报告称,对比海外,看好国内大企业深度使用
大
模型
赋能旗下应用,也看好未来算力继续高增长,建议关注AI多模态、AI应用及华为链+三条主线。 (1)AI多模态:万兴科技(300624.SZ)、美图公司(01357)(与海外组联合覆盖)、易点天下(301171.SZ)、焦点科技(002315.SZ)、当虹科技(688039.SH); (2)AI应用:金山办公(688111.SH)、科大讯飞(002230.SZ)、恒生电子(600570.SH)、鼎捷软件(300378.SZ)、福昕软件(688095.SH)、用友网络(600588.SH)、金蝶国际(00268)、泛微网络(603039.SH)、致远互联(688369.SH); (3)华为链+:海光信息(688041.SH)、寒武纪(688256.SH)、云天励飞(688343.SH)、景嘉微(300474.SZ)(电子组联合覆盖)。(综合投资者网、蓝鲸财经、券商研报)
lg
...
金融界
2024-02-18
盘一盘2024主要叙事逻辑:写在元宇宙奇点发生时
go
lg
...
动性。 甚至,我们可以进一步想象,基于
大
模型
的AI生态和基于公链的Web3生态在这个时代的实践,很有可能会是未来它们在元宇宙交汇时的底座。因此,乐观预期,2024年会出现若干个10亿U以上的「AI+Web3」项目,并因此带动加密世界进入Web3应用时代,Web3社交、链游以及我们所处的Web3媒介等赛道的应用市场也会在这一轮周期活跃,甚至出现专门服务「AI+Web3」的功能,比如致力于帮助企业接受加密货币付款的MugglePay,已经将2024年的发展重点从电商转向了AI及游戏领域,并面向AI服务商推出了独创的订阅式收款(Web3 subscription)功能;还有为AI提供数据存储与精准推送的StreamAi致力于成为“Web3网络、太空星际网络”的最大的云服务商,以及面向“程序、机器人”的ChatGPT。 但是,我们需要理清这轮周期活跃的「AI+Web3」与我们曾经提出的「AI+Web3/区块链=文明以止」的不同。本轮周期「AI+Web3」只是应用场景的集合,可以在「互联网+」的惯性迭代逻辑里理解。但是,未来十数年间甚至数十年间,不断提高生产力的AI与图灵完备的生产关系乃至社会关系变革的Web3在元宇宙风云际会,人类进入数字化进阶的新时代。 当然,这一切要有赖于2024年这些活跃的「AI+Web3」项目的实践。 结语: 这大概会是以比特币为周期的最后一轮牛熊迭代,这大概也会是载入史册的一轮牛市周期。自此,Web3/区块链为AI/智能网络建立秩序开始落地,以此带动的加密世界原生资产市场也会快速扩大;与此同时,物理世界资产数字化(RWA)也进入快速通道,加密市场资产会逐渐超过传统物理市场的金融资产市场。 在此基础上,人们对元宇宙的想象开始落地,元宇宙建构的两大主线(AI与Web3)次第展开并终将交汇在元宇宙。最新的消息是,Sora的生成能力惊人,OPENAI推动了元宇宙建构一大步。但加密世界Web3也并没有落后,现在的制约因素是更为基础的硬件设备和网络设施,尤其是网络设施,一个致命性问题是华语世界的用户敢相信中国移动吗?当人类精英在布局事关未来的科技高地,中国移动还在忙着消耗用户流量来换取更多用户话费。期待这类问题会有解,用Web3世界的方法。 2024值得期待的还有很多。共勉! 来源:金色财经
lg
...
金色财经
2024-02-18
天风证券:海外AI再度加速 三条主线值得关注
go
lg
...
告称,对比海外,看好国内大企业深度使用
大
模型
赋能旗下应用,也看好未来算力继续高增长,建议关注AI多模态、AI应用及华为链+三条主线。
lg
...
金融界
2024-02-18
为IPO添把火! “美版贴吧”Reddit上市前签署AI内容授权协议
go
lg
...
台的内容基础上训练该科技公司的人工智能
大
模型
。目前,华尔街投资机构普遍猜测Reddit可能即将启动市场期待已久的首次公开募股(IPO)。
lg
...
金融界
2024-02-17
近10年数据显示:春节后首个交易日上证指数上涨概率达60%,券商建议重点关注TMT,这四大行业上涨概率更高
go
lg
...
重要投资主线的十大产业趋势,包括算力、
大
模型
、消费电子、数据要素、智能驾驶、人形机器人等。 一、算力:海外头部加速“内卷”,国产厂商正在崛起(随着我国AI下游需求的爆发和海外芯片流入日益收紧,国产AI芯片算力有望持续迭代,量价未来可期,是值得关注的长期大趋势。) 二、
大
模型
:全球生态优化完善,国产
大
模型
加速迭代(未来重点关注:1)通用模型领域行业龙头的优势将随时间不断扩大,强大的技术、资金、人才和应用使大型企业有望占主导地位。2)中小企业面临挑战和机遇,可以依靠在特定细分市场和数据处理方面的优势成为垂直领域的关键参与者。) 三、消费电子:硬软件加成下,AI引领消费电子新浪潮(建议重点关注:1)AIPC: 搭载AI驱动显卡和AIGC应用的个人电脑产品,联想、惠普等传统巨头将迅速导入该赛道,关注国内PC产业链机会; 2)AIXR: 与AIGC可深度耦合的可穿戴终端,苹果有望引领产业链快速发展,国内XR设备生产产业链有望受益; 3)AI手机: 搭载本地AI
大
模型
的移动设备,华为、谷歌、VIVO等已在
大
模型
有所突破的厂商有望拔得头筹。) 四、数据要素:加快体系化构建,推动数据与产业融合发展(数据要素产业链建议重点关注:1)数据供给: 数据供应商、数据服务商; 2)数据流通: 数据交易所参股企业; 3)数据需求: 数字化转型服务商、数据应用方。) 五、智能驾驶:步入新阶段,高级别智能驾驶加速落地(投资方面,未来重点关注:1)智能驾驶相关技术突破: 随着人工智能、大数据、云计算等技术的发展,高级别智能驾驶技术有望持续实现重大突破,特别是在座舱、感知、决策和控制系统方面; 2)商业应用加速: 更多国内整车厂有望推出具备高级别智能驾驶功能的新车型,同时出行服务提供商可能会开始大规模部署自动驾驶出租车或无人配送车辆; 3)车联网: 智能驾驶快速发展为车联网提供落地空间,重点关注路侧核心设备、通信终端及设备、信息安全等环节。) 六、人形机器人:商业化井喷正当时,产业化加速落地(重点关注产业链价值量较大的零部件环节,例如电机、滚珠丝杠、减速器、传感器等。) 七、低轨卫星通信:从0到1,低轨卫星网络全面铺开(未来重点关注:1)由于卫星发射是低轨卫星通信产业链的最关键环节,因此发射成功次数和一箭多星数量决定了行业空间的上限。产业链层面,空间段及地面端基础设施建设先行,通信载荷、相控阵雷达、信关站核心网等上游卫星制造发射和地面站环节将深度受益;2)可复用火箭可以大幅降低单星发射成本,是实现低轨卫星通信大规模商业化应用的痛点环节,类比SpaceX试验情况,我们认为未来1-2年内有望实现入轨可回收;3)卫星互联网未来发展趋势,例如星上处理、星间链路、手机直连、高低轨协同、星地频率共享以及低轨导航增强等。) 八、低空经济:eVTOL有望成为新“爆点” 九、MR:Vision Pro开启新时代,安卓平台奇点将至(未来重点关注:1)MR新产品发布情况,如三星、华为等。2)爆款应用、内容推出情况,如空间音视频、游戏、流媒体等。3)产品渗透率提升后,国内XR产业制造产业链有望受益,包括 芯片、屏幕、光学与传感器 等增量零部件,以及 组装代工、显示、结构件及模组、设备 等环节。) 十、氢能:政策引领,风光氢一体化项目不断落地(关注以下投资趋势:1)制氢技术领域,未来重点关注电解槽关键零部件及材料技术突破情况;2)储运技术领域,未来重点关注氢能储运装备材料的迭代升级和氢储运装备设计制造的创新情况;3)燃料电池领域,未来重点关注通过工艺改良、构建自动化产线、新材料研发等方式,协同关键核心零部材持续优化,促进生产成本下降。)
lg
...
金融界
2024-02-17
春节假期大事及全球市场表现一览:中国资产涨声一片,港股强势三连阳,A股“开门红”稳了?
go
lg
...
发布 Sora 模型,有望开启多模态
大
模型
的新一轮浪潮。 ·美股芯片龙头ARM股价4日暴涨1.3倍。业绩远超预期消息刺激下,美股芯片龙头ARM股价暴涨,周一盘中一度飙涨达42%,2月7日至2月12日间的四个交易日累计最大涨幅约130%。 ·软银集团创始人孙正义计划筹措1000亿美元成立一家AI芯片企业。 ·阿里巴巴获“大空头”Michael Burry进一步增持,成其头号重仓股。 附:休市日历
lg
...
金融界
2024-02-17
浙商证券:OpenAI&谷歌相继发力 有望引领多模态
大
模型
浪潮
go
lg
...
发布 Sora 模型,有望开启多模态
大
模型
的新一轮浪潮。
lg
...
金融界
2024-02-17
周鸿祎:Sora意味着AGI实现将从10年缩短到1年
go
lg
...
nAI训练这个模型应该会阅读大量视频,
大
模型
加上Diffusion技术需要对这个世界进行进一步了解,学习样本就会以视频和摄像头捕捉到的画面为主。一旦人工智能接上摄像头,把所有的电影都看一遍,把YouTube上和TikTok的视频都看一遍,对世界的理解将远远超过文字学习,一幅图胜过千言万语,而视频传递的信息量又远远超过一幅图,这就离AGI真的就不远了,不是10年20年的问题,可能一两年很快就可以实现。
lg
...
金融界
2024-02-16
上一页
1
•••
726
727
728
729
730
•••
1000
下一页
24小时热点
【黄金收评】究竟发生了什么!?金价暴涨74美元创历史新高 如何交易黄金?
lg
...
特朗普突发重磅!特朗普威胁将祭出两项新的关税 其中一项达到100%
lg
...
中美重大突发!英国金融时报:特朗普政府收紧对中国企业的出口管制
lg
...
中国突传大消息!彭博独家:华为计划将顶级人工智能芯片产量提高一倍
lg
...
黄金刚刚又爆发!金价日内大涨逾35美元创新高 FXStreet高级分析师金价技术分析
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#链界盛会#
lg
...
126讨论
#VIP会员尊享#
lg
...
1989讨论
#CES 2025国际消费电子展#
lg
...
21讨论