全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
Future3 Campus访谈丨资本是如何看待AI+Web3的?
go
lg
...
帮助是效率方面。比如Dune发布了AI
大
模型
的工具来做代码异常检测和信息索引,用户可以去用自然语言去查询相应的数据,它的代码就会相应地进行生成,然后还可以去做代码的优化,这个就是效率方面的一个提升。 另外还有用AI做安全预警的项目,它就是将 AI经过相应的训练之后,可以去快速的去识别安全问题的一个 AI Robot。比如 AI 算法里边就有一个算法叫异常检测,效果比从纯数学统计的方法直接去看数据的分布,检测出一个异常值要更好,所以这种 AI 可以更有效地去做安全方面的监测。 另外我还有看到一些项目使用AI算法,比如大语言模型来检索整个Web3的新闻数据(不只是链上数据),进行信息聚合和舆情分析,形成一个AI Agent。比如用户可以直接在对话框里面去查某个代币最近30 天或者 90 天的网络舆情,用户是更偏向于看多,还是看空,给予相应的分值来体现热度;它还会有个曲线,通过这个曲线就可以判断一个代币它是在大家讨论到顶峰的时刻,还是在一个顶峰下降的时刻,还是在一个上升的时刻?这些可以辅助用户投资,我觉得也是一个挺有意思的应用方式。 但也有些其他的项目宣称自己的数据是AI的数据源蹭 AI 概念,我觉得这有点牵强,因为任何链上数据都可以是AI的数据源,因为它是公开的,所以有点蹭热点的嫌疑。 Matrix Partners-子熹:商业模式是现在数据领域的一个大问题,要找到一个解决方案很难。可能在ToC端,利用Web3的一些概念,比如token或分布式概念,可以让AI数据采用不同的商业模式。但如果是AI技术赋能数据,目前并没有太多亮点。 AI在数据处理和清洗方面可能有辅助作用,但这更多是内部的帮助,比如在产品开发过程中提升功能或用户体验。但从商业角度来说,并没有太大改变。 AI bot确实可以增加一些竞争力,辅助用户,但目前来说这不是一个很大的优势点,核心竞争力还是取决于数据源的质量。如果数据源充足,我可以获取我需要的信息。问题是,如果这些数据要商业化,那么我组合出来的东西必须能变现,我才愿意为数据支付费用。现在的问题是,市场不好,初创公司不知道如何变现数据,也没有足够的新进场初创公司。 我觉得目前有意思的反而是一些Web2的公司,它们使用了Web3的技术。比如一个合成数据的公司,他们通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI
大
模型
训练使用。他们在处理数据的时候涉及到很多隐私部署的问题,使用了Oasis区块链,可以有效避免了数据隐私问题。后面他们还想做一个数据交易所,将合成的数据包装在NFT里进行买卖,解决确权和隐私问题。我觉得这是一个很好的思路,它用Web3技术来辅助Web2解决问题,不一定局限于Web3的公司。不过,目前合成数据的市场还不够大,早期投资这样的公司有风险。如果下游市场做不起来,或者竞争对手太多,情况也会很尴尬。 在AI+Web3数据的领域,有没有投过一些比较好的项目,分别是什么方向的,决定投他们的关键因素是什么?您认为这类项目的核心竞争力是什么?AI是否会加强这个竞争力? Hashkey Capital-Harper:我们投的数据项目比较早,基本都是还没有特别强调ai的时候就投了,比如space and time、0xscope、mind network、zettablock等,投的关键是看他们的定位和数据质量。现在这些项目都会有AI的计划,基本也是先从聊天agent开始。space and time和chainML合作推出了创建ai agent的基础设施,其中创建的defi agent被用于space and time,也是一种结合AI的方式。 SevenX Ventures-Yuxing:如果项目与AI的结合做得很好,那么我可能会对其更感兴趣。决定我是否会投资的关键因素之一是项目是否有市场壁垒。我观察到很多项目宣称他们与AI结合能够提升效率,例如快速的数据查询功能。有些项目可以通过自然语言查询来快速获取链上NFT数据,比如查询最近交易最活跃的十大NFT。这样的项目可能有先发优势,但市场壁垒可能并不牢固。 真正的壁垒是AI本身的应用以及工程师如何将AI应用到具体场景中。工程师如果能熟练地进行模型微调,通常能够获得良好的效果。对于那些提升效率的项目来说,市场壁垒主要在于数据源。不仅仅是链上数据,还包括项目方如何处理和解析这些数据。例如之前提到的项目,它们能够通过AI算法快速检索重要数据。然而,工程师进行模型微调的效果是有限的,真正的持续优势在于数据源的质量和其持续优化的能力。这也是为什么一些数据分析公司能够在市场中脱颖而出的原因,他们不仅提供数据源,还包括数据处理和分析的能力,区别往往在于团队的技术能力和人才。这些因素直接关系到AI结合应用的最终效果, 另外,我也关注那些能让AI变得更好的Web3技术项目,因为AI市场非常庞大。如果Web3技术能够增强AI的能力,那么应用场景将会非常广泛。这就是ZKML项目受到热捧的原因。但是,我注意到Web3项目往往容易被夸大或贬低其价值。像ZKML这样的项目,尽管备受关注,但它们的投资回报并不像人们期待的那样迅速,退出机制也并不清晰,因为它们发行代币的难度较大。因此,尽管这些项目富有创意并具有潜在价值,但是否值得现在投资,以及它们最终能带来多少回报,是投资者需要仔细考量的。 Matrix Partners-子熹:我们投资了一个结合AI和Web3的公司,它是一个数据标注公司,叫Questlab。他们使用区块链技术提供数据标注的众包服务。数据标注原本是一个直营或者是分包的行业,很难做到知识领域的全覆盖。 就传统的数据标注来说,一般分为三个类型:直营、分包和众包。但实际上做众包的人比较少。这三种模式的公司在选择数据标注服务时需要考虑的因素有:价格是否便宜、标注的质量是否高、效率如何。还有一个就是能否覆盖他们所在的行业。如果你只是做一些通用模型的语言或图片的标注,其实很简单,就是识别英文字或图片。再难一点,比如需要区分猫、狗、月亮、婴儿车等,这也不是很难。但如果你需要做的是更专业的标注,比如语音机器人社区需要的标注,那就复杂多了。他们可能需要标注各种方言和多种语言,包括中文方言,英文方言、以及各种小众地区的语言等,很少有传统的工作室愿意做这样的工作。 一个更复杂的例子是法律加AI公司,需要标注大量的法律知识来训练各种模型,要找到既懂法律又能进行专业标注的人非常难,需要同时懂得各国法律,还要了解各种专业法律领域,如合同法、租赁法、民法、刑法等。市场上几乎没有一家数据标注公司能够提供如此专业的服务。法律是专业的,金融、生物、医疗、教育等也是如此。所以,这些领域的标注工作一般只能由内部团队来完成,他们使用众包的方法,这样就能解决知识专业覆盖的问题。 我们认为,利用区块链进行众包是一个很好的方向,就像YGG在Gamefi领域做的事一样。这是我们认为是一个有前景的方向。 另外,我们觉得在开源模型社区里面,也会有一些很好的机会。比如Polychain投的一个项目是一个类似于web3 的hugging face,用来解决模型内容创造者经济的问题。 其他的AI和Web3的结合,我觉得ToC方向如果能结合一些token的玩法,提高整个社群的粘性、日活和情感,我们觉得这是可行的。这也方便投资人来变现,但是市场规模如何也不是很确定。这就是我对AI和Web3的一些看法。我觉得如果纯ToB的业务,没必要用Web3,就用Web2的方式做就挺好的。 Qiming Venture Partners-唐弈:目前我们投的有一些数据项目正在通过链上数据在安全场景中进行工作。我认为一些AI基本的模式识别或特征发现工作都有涉及,并且效果还可以。然而,更高级的工作,如将大量活动数据输入模型并识别多种信息,目前仍在尝试阶段,效果尚需验证。除了安全领域外,许多其他领域也存在类似情况。 最近的一个例子是我们投的NFTGo,它是一个基于大数据分析去做NFT的定价,具有一定的准确性,并计划将其用于价格Oracle等用途。虽然这一体系听起来很有趣,但在产品中以及用户接受程度方面,仍需要进行验证。因为即使目前可能能够达到90分或85分的准确性,用户可能需要更高水平,比如98分或95分,因此还需要进一步验证。因此,虽然一些项目正在将数据分析和模式识别等简单AI能力应用于产品中,但是否成为关键因素尚未得到验证。 而对于投资意愿方面,我个人不会因为项目有一些AI的噱头就更倾向于投资,因为我认为实际效果和项目是否能实现其目标以及带来好处更为重要。如果一个项目只是在名字或市场营销上有亮点,作为一种营销手段,以吸引更多关注或曝光,我能理解。但在投资决策中,我认为更重要的是实际效果。 像一些项目在做ZKML,这个赛道似乎备受瞩目,但是同时也有很大问题,就是它到底用于什么场景。我觉得目前不确定性特别强烈,更多还是很宏大的叙事。 从整体行业发展来看,AI + Web3数据这一赛道未来有哪些潜在的机会或发展方向?未来,AI是否有可能彻底升级数据产品,引入新概念?是否会增强用户的付费意愿? Hashkey Capital-Harper:肯定是有潜在机会的。未来发展方向其实还是落后于web2 的AI,那里的创造力明显更强,web3这边的AI大概率也是web2 AI的映射实现吧。 Matrix Partners-子熹: 我觉得最近的妙鸭相机让大家意识到,其实人们对AI产品还是有付费的意愿的,这不像传统的SaaS产品或游戏,人们期望免费才会使用。用户对AI的付费意愿其实还是挺强的。 未来的话我可以提供一点想法。我们在做数据标注流程中有一个关键步骤叫做预标注,就是我们训练一个模型,让模型来进行初级标注。这一步非常有价值,可以节约很多人力成本。我们将原始数据投入预训练的模型进行预标注,然后进行半自动化的数据处理,最终手动进行精确标注。预标注可以显著提高效率,可能原本需要100人的工作,现在可能只需要50到70人。 另外预标注方面也涉及到AI和人的协作,通过你的反馈可以不断提高模型的预标注能力,从而减少数据标注团队的人数需求。随着AI和人的协作越来越好,原本100人的团队可能只需要30人。但是,这个过程有一个下限,即使AI协作做得非常好,仍然需要一定数量的人工进行最终的标注和审核。 在其他领域由于我不是数据科学家,我没有亲自清洗过数据或使用数据进行SQL查询,所以我不清楚AI在这些领域具体能提供多大的帮助。 Qiming Venture Partners-唐弈:我觉得长期内与Web3和AI是应该有一些交集的。比如从意识形态的角度,Web3的价值体系是可以结合到AI上的,很适合作为bot的账号体系或者说价值转化体系。想象一下,一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。这些概念有点科幻,实际应用可能还有很长的路要走。 第二个可能的方向验证AI模型的输出是否基于特定类别或特定的模型,或者特定的数据,并且是否可信。这些领域在可信的AI模型中可能有一些用处。从技术角度来看这些非常有趣,但是否有足够的市场需求尚不确定。 另外一方面是AI的出现使数据内容生成变得泛滥和廉价。对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权可能需要一个全新的体系,包括创作者和智能体的角色。但总的来说,这些问题可能仍然有待解决,而故事性的内容可能需要更长的时间来发展。在短期内,我们应该继续关注数据底层的质量,并期待模型能够变得更强大。 另外在商业化方面,确实数据产品商业化非常难。但是我认为从商业角度来看,AI可能短期内不是解决数据产品商业化问题的解决方案。商业化需要更多的产品化努力,而不仅仅是数据化能力。因此,这些项目可能需要开发其他产品来实现商业化。 来源:金色财经
lg
...
金色财经
2023-12-06
美图以视觉
大
模型
4.0切入文生视频赛道
go
lg
...
在美图创造力大会上,美图正式发布视觉
大
模型
MiracleVision4.0版本,主打AI视频与AI设计,其中的AI视频包括文生视频、图生视频、视频运镜、视频生视频四大能力。与在接受媒体采访时,美图高级副总裁、影像产业事业群总裁陈剑毅将MiracleVision4.0定位为“生产力工具”,即面向B端市场,这与美图多数面向C端的产品定位有着巨大差异。
lg
...
金融界
2023-12-06
大
模型
热潮席卷AI人才市场 薪资水涨船高
go
lg
...
今年以来,受
大
模型
技术的驱动,人工智能关键岗位需求大增。一方面,各大技术公司通过各种途径挖掘人才;另一方面,市场上符合要求的人才十分短缺。与此同时,AI技术快速发展变化,求职者一边忙着挤入
大
模型
赛道,一边也深感迷茫,担心这项新技术又只是短暂流行且很快平息的一阵风潮。脉脉高聘11月发布的《2023人工智能人才洞察》报告显示,2022年人工智能行业人才供需比为0.63,而2023年1—8月下探至0.39,相当于5个岗位要争夺2个人才。薪资方面,根据报告,2022年人工智能新发岗位平均每月薪资为43817元,2023年1—8月上涨至46518元,提升了6.16%。值得注意的是,
大
模型
引发的AI创业潮带来了AIGC新发岗位薪资的持续上涨,平均月薪从今年1月的47015元上涨至8月的59638元,涨幅达26.85%。
lg
...
金融界
2023-12-06
大华股份:公司参编了116项国家标准和行业标准,公司申请专利8000余项,其中申请国际专利390余项
go
lg
...
注! 投资者:董秘好!可以介绍一下公司
大
模型
能为市场带来哪方面的收益及目前使用情况? 大华股份董秘:尊敬的投资者,您好!大华星汉
大
模型
具备准确性和泛化性跃升、图文提示定义新功能、突破视觉认知能力、全场景自主解析、大小模型与算力协同五大优势,能够加速
大
模型
多行业、更广泛落地,拓宽智能市场新空间。目前,公司已深入探索面向城市治理与企业数智化升级的诸多典型行业的视觉
大
模型
,致力于帮助更多行业构建视频数据产业价值,助力场景化AI能力升级。感谢您的关注! 投资者:董秘您好,请问公司参编了多少项国家标准和行业标准?以及专利软著数量分别是多少? 大华股份董秘:尊敬的投资者,您好!公司参编了116项国家标准和行业标准,公司申请专利8000余项,其中申请国际专利390余项。感谢您的关注! 投资者:你好,公司目前有毫米波雷达的生产吗? 大华股份董秘:尊敬的投资者,您好!公司汽车电子子公司华锐捷提供毫米波雷达相关产品,相关产品已量产。感谢您的关注! 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-12-05
大公司动向 | 诺和诺德寻求研发预防肥胖药物,碧桂园再将公司14个区域整合成7个
go
lg
...
厂构筑物和设备资产。 百度、腾讯等入股
大
模型
初创公司无问芯穹 天眼查App显示,11月30日,上海无问芯穹智能科技有限公司发生工商变更,股东新增北京百度网讯科技有限公司、广西腾讯创业投资有限公司等。
lg
...
金融界
2023-12-05
每日互动:随着人工智能等技术加速迭代,不断催生新模式、新业态,也蕴含着巨大的市场想象空间
go
lg
...
场想象空间。目前以GPT等为代表的AI
大
模型
的快速发展,给行业带来更多发展机会,也有助于公司更好地围绕自身业务场景推动技术战略迭代。公司作为专业的数据智能服务商,在人工智能领域也有探索,且已经在自身业务开展中运用。公司在可控
大
模型
的基础上,积极探索相关技术与公司现有产品和服务体系之间的融合,为用户提供更好的产品及服务质量,推动各行业和政府部门的数字化升级以及数据要素价值的释放。目前我们在数智交通、公共安全和数字营销等领域已应用了
大
模型
的能力、理念和方法。公司会密切关注行业动向和产业发展趋势,探索新技术与公司业务的融合互补。谢谢! 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-12-05
中机认检:公司检测业务涉及军品检测服务,检测产品对象包括军用保障装备、应急救援装备、无人智能装备等
go
lg
...
据要数,大数据等。是否考虑开发该类型的
大
模型
?让开发者更方便的研究,让制造业更容易制造出合格的产品。 中机认检董秘:您好,公司是第三方检测认证机构,严格保持公正性,对客户数据有保密责任;公司按照“市场化、国际化、专业化、集约化、规范化”行业发展方向,充分发挥认检协同优势,以客户需求为导向,为客户制定多样化、专业化、差异化的整体解决方案。 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-12-05
Footprint Analytics x Future3 Campus联合发布AI与Web3研报(下篇)
go
lg
...
World knowledge 的底座
大
模型
(OpenAI 以及其他开源模式)、细分领域垂直模型、个性化专家知识模型。让用户能把自己不同源的知识库统一在 Footprint 上去进行管理,并且利用私有数据去训练私有 LLM,适用于更个性化的应用场景。 在 Footprint 结合 LLM 模型探索中,也遇到了一系列的挑战和问题,其中最典型的就是token 不足、耗时的 prompt 提示以及回答不稳定等问题。而 Footprint 所处的链上数据这一垂直领域,面临的更大挑战是链上数据实体类型多、数量庞大,变化快,以何种形式投喂给 LLM,需要整个行业更多研究和探索。目前的工具链也还相对初期,还需要更多的工具去解决一些具体问题。 未来 Footprint 在技术和产品上与 AI 的结合包括以下内容: (1)技术方面,Footprint 将结合 LLM 模型在三个方面进行探索和优化 支持 LLM 在结构化数据上进行推理,让已沉淀的大量加密领域的结构化数据以及知识,能够被应用在 LLM 的数据消费以及生产上。 帮助用户建立个性化知识库(包括知识、数据以及经验),以及使用私有数据去提升已经优化过的 crypto LLM 的能力,让每个人都能建自己的模型。 让 AI 辅助分析以及内容生产,用户可以通过对话的方式,结合资金流数据以及私有知识库,去创建自己的 GPT,去生产以及分享 crypto 投资内容。 (2)在产品方面,Footprint 将重点探索 AI 产品应用以及商业模式上的创新。根据 Footprint 近期对产品的推广计划,将推出为用户提供 AI crypto 内容生成与分享平台。 此外,对于未来合作伙伴的拓展,Footprint 将在以下两个方面进行探索: 第一,强化与跟 KOL 合作,助力有价值内容的生产以及社区的运营、知识的变现。 第二,拓展更多合作项目方以及数据提供方,打造一个开放、共赢的用户激励和数据合作,建立一个互利共赢的一站式数据服务平台。 1.3 GoPlus SecurityGoplus GoPlus Security是目前 Web3 行业领先的用户安全基础设施,提供各类面向用户的安全安全服务。目前已经被市面上主流的数字钱包、行情网站、Dex 以及其他各种 Web3 应用所集成。用户可以直接使用资产安全检测、转账授权和防钓鱼等各种安全保护功能。GoPlus所提供的用户安全解决方案可以全方位覆盖整个用户安全的生命周期,以保护用户资产免受各种类型的攻击者的威胁。 GoPlus 与 AI 的发展与规划如下: GoPlus 在 AI 技术方面主要探索体现在其 AI 自动化检测和 AI 安全助手两款产品中: (1)AI 自动化检测 GoPlus 从 2022 年开始自研基于AI技术的自动化检测引擎,来全面提升安全检测的效率以及准确率。GoPlus的安全引擎采用多层次、漏斗式的分析方法,采用了静态代码检测、动态检测以及特征或行为检测等多个环节。这一复合式检测流程使得引擎能够有效地识别并分析潜在风险样本的特征,从而对攻击类型和行为有效建模。这些模型是引擎识别和预防安全威胁的关键,它们帮助引擎判断风险样本是否具有某些特定的攻击特征。此外,GoPlus安全引擎经过长时间的迭代和优化,积累了非常丰厚的安全数据以及经验,其架构能够快速有效应对新出现的安全威胁,确保能够及时发现并阻止各种复杂和新型的攻击,全方位保护用户安全。目前该引擎在风险合约检测、钓鱼网站检测、恶意地址检测以及风险交易检测等多个安全场景均使用了AI相关的算法和技术。采用AI技术能更快速地缩短减小风险敞口,提高检测效率,降低检测成本;另一方面减少了人工参与的复杂性和时间成本,提高对风险样本判断的准确率,尤其是对于那些原本人工难以界定或引擎难以识别的新场景,通过AI可以更好地归集特征并形成更有效的分析方法。 2023 年,随着
大
模型
的发展,GoPlus 迅速适应并采用了 LLM。与传统 AI算法相比,LLM 在数据识别、处理和分析方面的效率和效果有了显著提升。LLM 的出现帮助 GoPlus 加快了在 AI 自动化检测方面的技术探索,在动态模糊测试的方向上,GoPlus采用了LLM技术能够有效的生成交易序列,探索更深的状态来发现合约风险。 (2)AI 安全助手 GoPlus 同时正利用基于 LLM 的自然语言处理能力,开发 AI 安全助手,以提供即时的安全咨询和改善用户体验。AI 助手基于 GPT
大
模型
,通过前端业务数据的输入,开发了一套自研的用户安全Agent,能够根据问题自动化的去分析、生成解决方案、拆解任务、执行,为用户提供需要的安全服务。AI 助手能简化用户与安全问题之间的交流,降低用户理解的门槛。 在产品功能上,由于 AI 在安全领域的重要性,未来 AI 有潜力彻底改变现有的安全引擎或病毒杀毒引擎的结构,出现以 AI 为核心的全新引擎架构。GoPlus 将持续对 AI 模型进行训练和优化,以期将AI从辅助工具转变为其安全检测引擎的核心功能。 在商业模式上,虽然目前 GoPlus 的服务主要面向开发者和项目方,但公司正在探索更多直接面向 C 端用户的产品和服务,以及与AI相关的新收入模式。提供高效、准确、低成本的 C 端服务将是 GoPlus 未来的核心竞争力。这需要公司持续研究,在与用户交互的 AI
大
模型
上进行更多的训练和输出。同时,GoPlus公司也将与其他团队合作,共享其安全数据,并通过合作推动安全领域内的 AI 应用,为未来可能带来的行业变革做好准备。 1.4 Trusta Labs Trusta Labs成立于2022年,是一家由人工智能驱动的Web3领域数据创业公司。Trusta Labs专注于利用先进的人工智能技术对区块链数据进行高效处理和精准分析,以构建区块链的链上声誉和安全基础设施。目前,Trusta Labs 的业务主要包括两款产品:TrustScan 和 TrustGo。 (1)TrustScan,TrustScan是一款专为B端客户设计的产品,主要用于帮助Web3项目在用户获取、用户活跃和用户留存方面进行链上用户行为分析和精细化分层,以识别高价值且真实的用户。 (2)TrustGo,一款面向 C 端客户的产品,其提供的 MEDIA 分析工具,可以从五个维度(资金金额、活跃度、多样性、身份权益、忠诚度)对链上地址进行分析和评估,该产品强调对链上数据的深入分析,以提升交易决策的质量和安全性。 Trusta Labs 与 AI 的发展与规划如下: 目前 Trusta Labs 的两款产品均是利用AI模型对链上地址的交互数据进行处理和分析。区块链上地址交互的行为数据,均属于序列数据,这类型的数据非常适合用于 AI 模型的训练。在对链上数据进行清洗、整理和标记的过程中,Trusta Labs 将大量的工作交给 AI 来完成,极大地提高了数据处理的质量和效率,同时也减少了大量的人力成本。Trusta Labs 利用 AI 技术对链上地址交互数据进行深入分析和挖掘,对于 B 端客户而言,可以有效地识别出较大可能性的女巫地址。在已使用 Tursta Labs 产品的多个项目中,Tursta Labs 均较好地防范了潜在女巫攻击的发生;而对于 C 端客户,通过 TrustGo 产品,利用现有的 AI 模型,有效帮助用户深入了解了自己的链上行为数据。 Trusta Labs一直在紧密关注LLM模型的技术进展和应用实践。随着模型训练和推理成本不断降低,以及Web3领域大量语料和用户行为数据的积累,Trusta Labs将寻找合适的时机,引入LLM技术,利用 AI 的生产力为产品和用户提供更深入的数据挖掘和分析功能。在目前 Trusta Labs 已经提供丰富的数据的基础上,希望可以利用 AI 的智能分析模型,为数据结果提供更多合理、客观的数据解读功能,如针对 B 端用户提供定性和定量解读已抓取到女巫账户的分析,让用户更理解数据背后的原因分析,同时可以为 B 端用户向其客户投诉解释时提供更翔实的材料佐证。 另一方面,Trusta Labs 也计划利用已开源或者较为成熟的 LLM 模型,并结合以意图为中心的设计理念来构建 AI Agent,从而来帮助用户更快捷、更效率地解决链上交互的问题。就具体应用场景而言,未来通过 Trusta Labs 提供的基于 LLM 训练的 AI Agent 智能助理,用户可以直接通过自然语言与智能助理进行交流,智能助理即可“聪明”地反馈链上数据相关的信息,并针对已提供的信息进行后续操作的建议和规划,真正实现以用户意图为中心的一站式智能操作,极大降低用户使用数据的门槛,简化链上操作的执行。 此外,Trusta 认为,未来随着越来越多基于 AI 的数据产品的出现,每个产品的核心竞争要素可能不在于使用何种 LLM 模型,竞争的关键因素是对已掌握数据更深层次的理解和解读。基于对已掌握数据的解析,再结合 LLM 模型,才能训练出更“聪明”的 AI 模型。 1.5 0xScope 0xScope,成立于 2022 年,是一个以数据为核心的创新平台,其专注于区块链技术和人工智能的结合。0xScope 旨在改变人们处理、使用和看待数据的方式。0xScope 目前针对 B 端和 C 端客户分别推出了:0xScope SaaS products 和 0xScopescan。 (1)0xScope SaaS products,一个面向企业的 SaaS 解决方案,赋能企业客户进行投后管理、做出更好的投资决策、了解用户行为,并密切监控竞争动态。 (2)0xScopescan,一个 B2C 产品 ,其允许加密货币交易者调查选定区块链的资金流动和活动情况。 0xScope 的业务重点是利用链上数据抽象出通用数据模型,简化链上数据分析工作,将链上数据转化为可被理解的链上操作数据,从而帮助用户对链上数据进行深入分析。利用 0xScope 提供的数据工具平台,不仅可以提升链上数据质量,挖掘数据暗藏的信息,从而揭示更多的信息给用户,该平台也极大降低了数据挖掘的门槛。 0xScope 与 AI 的发展与规划如下: 0xScope 的产品正在结合
大
模型
进行升级,这包含两个方向:第一,通过自然语言交互的模式进一步地降低用户的使用门槛;第二,利用 AI 模型提高在数据清洗、解析、建模和分析等环节的处理效率。同时,0xScope 的产品中即将上线具有 Chat 功能的 AI 互动模块,该功能将极大地降低用户进行数据查询和分析的门槛,仅通过自然语言即可与底层的数据进行交互和查询。 但在训练和使用AI的过程中,0xScope 发现其中仍面临这以下挑战:第一,AI 训练成本和时间成本较高。在提出一个问题后,AI 需要花费较长时间才能进行回复。因此,这个困难会迫使团队需要精简和聚焦业务流程,专注于垂直领域的问答,而不是让其成为一个全方位的超级AI助理。第二,LLM 模型的输出是不可控的。数据类的产品希望给出的结果是精准的,但目前LLM模型给出的结果很可能与实际的情况有一定出入,这对数据类产品的体验是非常致命的。此外,
大
模型
的输出有可能会涉及到用户的隐私数据。因此,在产品中使用 LLM 模式时,团队需要对其有较大程度的限制,以使得 AI 模型输出的结果可控且精准。 未来,0xScope 计划利用 AI 专注于特定的垂直赛道并进行深耕。目前基于已大量积累大量链上数据,0xScope 可以对链上用户的身份进行定义,后续将继续利用 AI 工具抽象链上用户行为,进而打造出一套独特的数据建模的体系,通过这套数据挖掘和分析体系揭示出链上数据暗含的信息。 在合作方面,0xScope 将聚焦在两类群体:第一类,产品可以直接服务的对象,比如开发者、项目方、VC、交易所等,该群体需要目前产品所提供的数据;第二类,对 AI Chat 有需求的合作伙伴,如 Debank、Chainbase 等,他们只需要有相关的知识和数据,便可以直接调用 AI Chat。 VC insight——AI+Web3 数据公司的商业化和未来发展之路 本节内容通过采访了 4 位资深的 VC 投资人,将从投资和市场的视角来看 AI+Web3 数据行业的现状和发展,Web3 数据公司的核心竞争力以及未来的商业化道路。 2.1 AI+Web3 数据行业的现状和发展 目前,AI 与 Web3 数据的结合正处于一个积极探索的阶段,从各个头部 Web3 数据公司的发展方向来看,AI 技术以及 LLM 的结合都是必不可少的趋势。但同时 LLM 有其自身技术局限性,尚不能解决当前数据行业的很多问题。 因此,我们需要认识到并非盲目地与 AI 结合就能够增强项目的优势,或者是使用 AI 概念进行炒作,而是需要探索真正具有实用性和前景的应用领域。从 VC 的视角,目前 AI 与 Web3数据的结合已经有以下方面的探索: (1)通过 AI 技术来提高Web3 数据产品的能力,包括 AI 技术帮助企业提高内部数据处理分析的效率,以及相应提高对用户的数据产品的自动化分析、检索等能力。例如 SevenX Ventures 的Yuxing 提到 Web3 数据使用 AI 技术最主要的帮助是效率方面,比如 Dune 使用 LLM 模型做代码异常检测和将自然语言转化生成 SQL 去信息索引;还有用 AI 做安全预警的项目,AI 算法做异常检测效果比从纯数学统计更好,所以可以更有效地去做安全方面的监测;此外,经纬创投的子熹提到企业可以通过训练 AI 模型进行数据的预标注,能节约很多人力成本。尽管如此,VC 们都认为,在提高 Web3 数据产品的能力和效率方面,AI 起到的是辅助作用,例如数据的预标注,最终可能仍需要人工审核来确保准确性。 (2)利用 LLM 在适应性和交互上的优势,打造 AI Agent/Bot。例如使用大语言模型来检索整个 Web3 的数据,包括链上数据和链下新闻数据,进行信息聚合和舆情分析。Hashkey Capital 的 Harper 认为这类的 AI Agent更加偏向于信息的整合、生成,以及和用户之间的交互,在信息准确性和效率上会相对弱一些。 上述两方面的应用尽管已经有不少案例,但是技术和产品仍然在探索的早期,因此未来也需要不断地进行技术优化和产品改进。 (3)利用 AI 进行定价及交易策略分析:目前市场中有项目利用 AI 技术给 NFT 进行价格估算,如启明创投投资的 NFTGo,以及有些专业交易团队使用 AI 进行数据分析和交易执行。此外 Ocean Protocol 近期也发布了一个价格预测的AI产品。这类的产品似乎很有想象力,但在产品中、用户接受程度方面,尤其是准确性方面仍需要进行验证。 另一方面,有不少 VC,尤其是在 Web2 有投资的 VC会更关注提到 Web3 和区块链技术能够为 AI 技术带来的优势和应用场景。区块链具有公开可验证、去中心化的特点,以及密码学技术提供隐私保护能力,加上 Web3 对生产关系重塑,可能能够给 AI 带来一些新的机会: (1)AI 数据确权与验证。AI 的出现使数据内容生成变得泛滥和廉价。启明创投的唐弈提到对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权需要一个全新的体系,区块链可能可以提供帮助。经纬创投的子熹提到有数据交易所将数据放在NFT中进行交易,可以解决数据确权的问题。 另外,SevenX Ventures 的 Yuxing 提到Web3 数据能够改善 AI 造假和黑盒问题,当前 AI 在模型算法本身和数据方面都存在黑盒问题,会导致输出结果的偏差。而Web3的数据具有透明性,数据是公开可验证的,AI模型的训练源和结果都会更加明晰,使得AI更加公正,减少偏见和错误。但当前 Web3 的数据量还不够多,不足以给 AI 本身的训练赋能,因此短期不会实现。但是我们可以利用这一特性,将 Web2 数据上链,来防止 AI 的深度伪造。 (2)AI 数据标注众包及 UGC 社区:目前传统 AI 标注面临效率和质量较低的问题,尤其是在涉及到专业知识领域,可能还需要交叉学科知识,传统的通用数据标注公司是不可能覆盖的,往往需要专业团队内部来做。而通过区块链和 Web3 的概念引入数据标注的众包,则能很好地改善这个问题,例如经纬创投投资的Questlab,他们使用区块链技术提供数据标注的众包服务。此外,在一些开源模型社区中,也可以使用区块链概念来解决模型创作者经济的问题。 (3)数据隐私部署:区块链技术结合密码学相关技术可以保证数据的隐私和去中心化。经纬创投的子熹提到他们投资的一个合成数据公司,通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI
大
模型
训练使用。公司在处理数据的时候涉及到很多隐私部署的问题,使用了 Oasis区块链,可以有效避免了隐私和监管问题。 2.2 AI+Web3 数据公司如何打造核心竞争力 对于 Web3 技术公司来说,AI 的引入能够一定程度上增加项目的吸引力或关注度,但是目前大部分 Web3 技术公司相关结合 AI 的产品并不足以成为公司的核心竞争力,更多是在提供了更友好的体验,以及效率的提升。譬如 AI Agent 的门槛并不高,先做的公司可能在市场有先发优势,但并不产生壁垒。 而真正在 Web3 数据行业中产生核心竞争力和壁垒的应该是团队的数据能力以及如何应用 AI 技术解决具体分析场景的问题。 首先,团队的数据能力包括了数据源及团队进行数据分析和模型调整的能力,这是进行后续工作的基础。在采访中,SevenX Ventures、经纬创投和 Hashkey Capital 都一致提到了 AI+Web3 数据公司的核心竞争力取决于数据源的质量。在这个基础上,还需要工程师能够基于数据源熟练地进行模型微调、数据处理和解析。 另一方面,团队 AI 技术具体结合的场景也非常重要,场景应该是有价值的。Harper 认为,尽管目前 Web3 数据公司与 AI 的结合基本都是从 AI Agent 开始,但他们的定位也不同,例如 Hashkey Capital 投资的 Space and Time,和 chainML 合作推出了创建 AI agent 的基础设施,其中创建的 DeFi agent 被用于 Space and Time。 2.3 Web3 数据公司未来的商业化道路 另一个对于 Web3 数据公司很重要的话题是商业化。长期以来,数据分析公司的盈利模式都比较单一,大都 ToC 免费,主要 ToB 盈利,这很依赖于 B 端客户的付费意愿。在 Web3 领域,本身企业的付费意愿就不高,加上行业初创公司为主,项目方难以支撑长期的付费。因此目前 Web3 数据公司在商业化的处境上比较艰难。 在这个问题上,VC 们普遍认为当前 AI 技术的结合,仅应用在内部解决生产流程的问题,并没有改变本质上的变现难问题。一些新的产品形式如 AI Bot 等门槛不够高,可能一定程度上在 toC 领域增强用户的付费意愿,但仍然不是很强。AI 可能短期内不是解决数据产品商业化问题的解决方案,商业化需要更多的产品化努力,例如寻找更加合适的场景,和创新的商业模式。 在未来 Web3 与 AI 结合的路径上,利用 Web3 的经济模型结合 AI 数据可能会产生一些新的商业模式,主要在 ToC 领域。经纬创投的子熹提到 AI 产品可以结合一些 token 的玩法,提高整个社群的粘性、日活和情感,这是可行的,也更容易变现。启明创投的唐弈提到,从意识形态的角度,Web3 的价值体系可以结合到AI上的,很适合作为 bot 的账号体系或者说价值转化体系。例如一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。但这个概念属于未来的畅想,实际应用可能还有很长的路要走。 而在原来的商业模式,即用户直接付费上,需要有足够强的产品力,让用户有更强的付费意愿。例如更高质量的数据源、数据带来的效益超过支付的成本等,这不仅仅在于 AI 技术的应用,也在数据团队本身的能力之上。 关于Footprint Analytics Footprint Analytics是一家区块链数据解决方案提供商。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 30 条公链生态的 NFT,GameFi 以及 钱包地址资金流追踪数据。 关于Future3 Campus Future3 Campus是由万向区块链实验室和HashKey Capital共同发起的Web3.0创新孵化平台,重点聚焦Web3.0 Massive Adoption、DePIN、AI三大赛道,以上海、粤港澳大湾区、新加坡为主要孵化基地,辐射全球Web3.0生态。同时,Future3 Campus将推出首期5000万美金的种子基金用于Web3.0项目孵化,真正服务于Web3.0领域的创新创业。 来源:金色财经
lg
...
金色财经
2023-12-05
公司问答丨云天励飞:公司自研千亿级
大
模型
——云天天书
大
模型
已完成2次版本更新
go
lg
...
在互动平台向云天励飞提问:公司云天天书
大
模型
版本迭代进展如何?最新版本实现了哪些功能?公司“基于神经网络处理器的视觉计算AI芯片”项目进展如何? 云天励飞回应:公司自研千亿级
大
模型
——云天天书
大
模型
已完成2次版本更新,综合能力进一步提升,在通用问答、语言理解、数学推理、文本生成、角色扮演等方面均达到行业先进水平;下一版云天天书
大
模型
将对标GPT 4.0,进一步提升多模态能力。公司募集资金投资项目“基于神经网络处理器的视觉计算 AI 芯片项目”正稳步推进,关于公司募集资金投资项目的进展情况,敬请持续关注公司后续公开披露的信息。
lg
...
金融界
2023-12-05
惨烈,4600股下跌!原因找到
go
lg
...
和美债利率下行的创新药板块,以及受益于
大
模型
快速落地催化的传媒、计算机等板块,仍有较好的中长期配置价值。
lg
...
证券之星
2023-12-05
上一页
1
•••
795
796
797
798
799
•••
1000
下一页
24小时热点
多头敞口未达到极端水平:黄金3870又逼近纪录高点!高盛直言目标不止4000
lg
...
小心非农发布中断,黄金大爆发直逼3900!高盛又一次重申看涨立场
lg
...
中美最新消息!特朗普:四周后与习近平会面,大豆是重要议题
lg
...
中国股市反弹不可持续?这家欧洲资管巨头已获利,并加仓至……
lg
...
【美股收评】逆势上涨!美国政府关门未阻市场乐观情绪,标普500创盘中新高
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#链界盛会#
lg
...
129讨论
#VIP会员尊享#
lg
...
1989讨论
#CES 2025国际消费电子展#
lg
...
21讨论