全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
财报分析 | AI 赋能的下一代搜索:百度的新增长引擎
go
lg
...
自然语言处理、计算机视觉、语音以及传统
机器
学习
等各类人工智能任务。 ◎ 文心一言-文心大模型 受益于百度知识图谱文心大模型成为了全球首个知识增强千亿大模型。文心大模型已历经多次迭代,在更早之前也已经从单一的自然语言理解延伸到多模态,包括视觉、文档、文图、语音等多模态多功能。 百度为推进大模型深入产业落地,与行业头部企业联合研发融合行业数据、知识以及专家经验的行业大模型,目前百度文心大模型已经在电力、金融、媒体等领域,发布了10多个行业大模型。 文心大模型全景图刷新,构建产业大模型体系。大模型的出现,为人工智能进一步发展带来新机遇,深度学习平台加大模型,贯通AI全产业链,夯实产业智能化基座,将进一步加速智能化升级。 文心一言通过自然语言交互的形式,根据用户的指令,完成问答、文本创作、代码查错等任务。其能力和应用场景非常广泛,主要包括以下几个方面: 生成应用和布局:根据用户的需求和偏好,自动生成各种应用和界面布局,比如网页、APP、游戏等。 搜索和数据分析:根据用户的查询,自动搜索和分析相关的数据,并以图表或文本的形式呈现给用户,比如股票、天气、新闻等。 程序生成和分析:根据用户的描述或示例,自动生成或修改相应的代码,并对代码进行检查和优化,比如Python、Java、C++等。 文本生成:根据用户的输入或主题,自动生成各种类型和风格的文本内容,比如小说、诗歌、广告、论文等。 内容创作:根据用户的需求和喜好,自动创作各种类型和形式的内容,比如音乐、视频、图片等。 一般推理:根据用户提供的信息或问题,自动进行逻辑推理和判断,并给出合理的答案或建议,比如数学题、谜语、道德问题等。 其他:可以应用于其他领域和场景,比如教育、娱乐、社交、医疗等。 1.2 移动生态 百度移动生态的核心是百度App,是中国第一的搜索加信息流应用程序,2022年12月拥有6.48亿的MAU及每日登录率超过80%。与大多数移动应用程序不同,百度总计通过其自有的AI支柱,来自第三方应用程序及网站的汇总内容和服务可将流量直接引向封闭生态系统,亦可将流量直接引向具有类似于本地应用程序体验的第三方内容及服务供应商。 根据开放式平台模型,百度总计利用百家号账户,智能小程序及托管页的网络合作伙伴,持续发展其庞大的第三方内容及服务。百度于AI及强大知识图谱开发方面积累的数十年经验使其能够在开放平台上将用户意图与长尾,第三方内容及服务进行匹配。 移动生态中包括数十个应用程序,其中包括百度App、好看视频及百度贴吧,为公众提供通过搜索及信息流发现及消费信息并与内容创作者,发布者,服务提供商及商户交流与互动的平台。从用户获取到用户关系管理再到闭环交易的类似于本地应用程序的体验,向商家展示百度的价值,令他们能够在平台上进行用户生命周期管理,亦使百度总计成为搜索及信息流的领先在线营销服务供应商。 在移动生态业务中,百度为50万名客户提供服务,使其能够利用庞大的用户群。百度主要通过提供全面有效的营销服务来满足客户需求,并从中变现。这部分收入主要来自提供搜索,信息流及其他营销服务,占2020年,2021年及2022年总收入的大部分。 被广泛使用的还有AI技术开发创新营销服务(例如动态广告),为各搜索用户推荐最适合的营销客户产品。百度的营销云亦为营销客户提供创新AI能力,以便用户于非营业时间仍可进行产品咨询,且百度大脑可自动与客户进行对话以促成交易。此外,在百度平台发展的用户活动及用户登录,令公司能够丰富除在线营销外的变现方法,比如百度健康。 1.3 智能驾驶 百度智能驾驶与其他增长计划包括有发展前景及巨大市场机遇的业务,部分业务处于商业化初期,客户群不断增长。百度作为智能驾驶及智能设备领域的市场领导者,正凭借其独特的AI能力,数据洞察力及内部研发芯片寻求快速增长机会。 萝卜快跑提供共享无人车服务,萝卜快跑在国内大陆向十个以上城市的公众开放。2022年,萝卜快跑供应的无人驾驶出行服务订单超过1.5百万单。到2023年1月底,萝卜快跑累计向大众提供的无人驾驶出行服务订单超过2百万单。自2021年11月25日起,萝卜快跑已开始在北京的开放道路上开始收费运营,于2022年7月20日,萝卜快跑获得了在开放道路上就提供无人车服务(方向盘后面无安全人员)收费的许可。2022年12月30日,萝卜快跑首批获准在北京开展全无人自动驾驶测试,令百度在首都的公共道路上向公众提供无人车服务更近一步。 百度在自动驾驶领域强劲的品牌及市场领导力已延伸至智能驾驶领域。阿波罗是汽车制造商公认的品牌。公司已经搭建与许多国内外个汽车品牌的合作,采用百度阿波罗汽车解决方案为其乘用车赋能。根据IDC、Strategy Analytics和Canalys,小度于2022年前9个月在全球智能屏出货量及中国智能音箱出货量中排名第一。由百度自主研发的AI芯片是针对百度大脑和特定AI用途定制的,以改善性能与降低成本,而百度也相信相关计划将增强收入长期增长动力。 02 业绩概览 2022财年,百度核心业务营收为954亿元人民币,与2021年基本持平。其中,在线营销业务营收为695亿元人民币,同比下降5.95%。 非在线营销收入方面,2022年的整体营收为259亿元人民币,同比增长22%,主要由云计算和其它基于AI驱动的业务推动。 • 百度2022年Q4营收331亿,与2021年同期持平 • 从2021-2022年各季度数据来看,百度2022年第四季度营收为331亿元,基本与2021年同期持平,较第三季度的325.4亿元增长2%。 其中,2022年第四季度来自百度核心的收入为257亿元,来自爱奇艺的收入为76亿元。 • 百度2022年Q4成本与费用284.84亿,同比降8% • 百度2022年第四季成本与费用为284.84亿元,较上年同期的311亿元降8%。 其中,百度2022年第四季度成本为169亿元,较上年同期下降2%;销售、管理费用为59亿元,较上年同期下降9%;研发费用为57亿元。公司销售及管理费用、研发费用、财务费用占营业收入比重分别为16.6%、18.9%、-1.5%,研发费用率较2021年同期保持稳定,销售及管理费用率有所下降。 • 百度Q4运营利润46亿,运营利润率16% • 百度2022年第四季度运营利润为46亿元,其中,百度核心的运营利润为38亿元,运营利润率为16%;百度2022年第四季度Non-GAAP下运营利润为65亿元,Non-GAAP下百度核心的运营利润为55亿元,实现了同比增长。 百度2022年第四季度其他收益为18亿元,其中有一项长期收益,达16亿元。 • 百度Q4净利50亿,较上年同期大幅改善 • 同样从2021-2022年各季度数据来看,百度2022年第四季度归属于公司的净利润为50亿元,较上年同期大幅改善;百度2022年第四季度Non-GAAP下归属于公司的净利为54亿元。 百度2022年第四季Adjusted EBITDA为82亿,adjusted EBITDA率为25%;其中,百度核心Adjusted EBITDA为71亿,adjusted EBITDA率为28%。 截至2022年12月31日,百度持有现金、现金等价物、受限制现金、短期投资为1853亿元。 2.1 利润增加的主要原因是降本增效与精简运营 2022财年百度公司收入成本为639亿元,同比上一财年同期的643亿元,该项成本下降1%。销售、一般与行政成本2022财年为205亿元,同比下降17%,财报称该项下降是由于渠道支出、促销营销和人员相关费用的减少。 财报显示,得益于持续的降本增效、精简运营,2022年下半年,百度核心经营利润(非美国通用会计准则)同比增长14%;在国内公共卫生防控冲击宏观经济的第四季度,百度经营利润、经营利润率也均实现同比增长。 2.2 基本盘广告业务收入有所下滑,搜索市场份额依旧遥遥领先 财报中显示,搜索引擎广告的在线营销收入有波动,在四个季度中,分别占总营收的55.3%、57.7%、57.5%、56.2%;核心业务中移动生态依然贡献了大部分营收。2022年,百度核心营收为954亿元人民币。其中,在线广告营销收入为695亿元人民币,同比下降6%。 由于公共卫生防控反复影响了线下经济活动,广告主削减预算,百度来自广告的收入减少。财报中显示,活跃在线营销客户数由2021年的约53.5万名减至2022年的约52万名,而每名客户平均收入由2021年的约人民币13.8万元减至2022年的约人民币13.4万元。根据《2022年中国互联网广告数据报告》,2022年,中国互联网广告市场规模预计约为5088亿元,较2021年下降6.38%。 随着2022年12月公共卫生防控政策放开后,移动业务的增长让百度广告业务有了回春的迹象。李彦宏的内部信提及,2022年12 月,百度App月活用户数达到6.48亿,同比增长4%。财报数据显示,百度托管页(Managed Page)的收入占广告收入的48%,同比增长了约40%。 2022年,百度在搜索市场的份额依然遥遥领先,且APP月活跃用户指标保持了正增长。根据statcounter统计数据,百度去年仍以超过85%的超高份额位居中国移动搜索市场份额位居榜首。而截至年末,百度APP月活跃用户达到6.48亿,同比增长4%。 「百度在新发布的2023年一季度财报中披露,百度智能云首次实现了盈利」 百度智能云在2023年一季度实现了盈利(non-GAAP),收入同比增长8%至42亿元。与此同时,百度智能云持续为关键客户构建标准化、规模化的人工智能解决方案,推动了智能云利润的增长。 2.3 非在线营销收入整体营收增长迅速,主要由智能云、AI业务推动 2022年,百度核心营收中,非在线营销收入259亿元,同比增长22%,占该年度总营收的21%。代表着智能云及其他AI业务的非在线营销收入呈总体上升趋势,在四个季度中,分别占总营收的20.07%、20.6%、20%、23%。 同时财报显示,2022年百度核心研发费用达到214.16亿元,占百度核心收入的22.4%。其中Al业务是重中之重。 一方面,作为百度AI to B业务的承载者,百度智能云通过对行业特定痛点的理解,提供深入核心场景的标准化AI解决方案,实现了市场份额的领先。“云智一体” 战略体现出更强竞年力百度智能云已连续四年AI公有云市场第一,2022年上半年在Al公有云服务市场份额占比28.1%。 另一方面,百度自动驾驶业务稳步推进。自动驾驶开放平台Apollo正式推出全新升级版本8.0;自动驾驶出行服务平台萝卜快跑订单量同比大增162%,截至2023年1月底,萝卜快跑累计订单量超过200万单,稳居全球最大的自动驾驶出行服务提供商。 2.4 百度在卸下包袱,而文心一言则是国内最有可能复刻ChaGPT的产品之一 2022年百度核心研发费用达214.16亿元,占比百度核心收入比例的22.4%,已官宣加入百度文心一言生态圈的企业达400+家,AI已成为百度大厦中愈发重要的一块基石,真金白银的持续投入,也正在转化为产业化成果。 文心在大模型已进入ERNIE 3.0系列、跨模态系列等底座模型日渐成熟,模型层基础扎实。2022年11月底,飞桨平台上己凝聚535万开发者、创建67万个Al模型,服务20万家企事业单位,在AI内容生态上都为文心一言提供了多元的使用场景。 对于百度来说,文心一言发布后,能够直接应用于自身产品的使用中,提升产品力。百度的搜索业务、智能驾驶业务都将受到加持,百度智能云也接入文心一言,提升B端服务能力。除此之外智能语音、数字人等都将通过文心言获得新的可能。 03 AIGC角度市场分析 3.1 大模型成为AI领域基础设施 自2022年Stable Diffusion模型的进步推动AIGC的快速发展后,年底,ChatGPT以“破圈者”的姿态,快速“吸粉”亿万,在全球范围内掀起了一股AI浪潮,也促使了众多海外巨头竞相发布属于自己的大模型。 而在国内,百度、阿里、华为、腾讯等公司也已在浪潮赶来之前就有所布局: 2019年,阿里开始布局大模型研发,去年9月发布“通义”大模型系列的众多大模型;华为在2021年基于昇腾AI与鹏城实验室联合发布了鹏程盘古大模型,是首个全开源2000亿参数中文预训练语言模型,在知识问答、知识检索、知识推理、阅读理解等文本生成领域表现突出;而腾讯的思路也与阿里相似,发布了混元AI大模型;第二梯队的京东、网易、360、字节跳动等企业,也纷纷官宣了自己在AI大模型方面的布局。此外,北京智源人工智能研究院推出1.75万亿参数的悟道2.0,可以同时处理中英文和图片数据。浪潮信息和中科院也分别推出了相应的大模型等。 其中,百度是国内最早推出大模型的大厂。 2023年3月,基于该高性能集群,百度推出大语言模型文心一言,并不断迭代出新的能力。随着文心一言的发布,成为了中国第一个类ChatGPT产品后,各家的大模型也纷纷亮相,一时间,国内仿佛陷入了“大模型之战”中。 目前,国内各大企业AI大模型系列主要的NLP语言大模型、CV大模型、多模态大模型已陆续推出并实现部分应用落地。百度文心大模型、华为盘古大模型、商汤大模型、阿里大模型都已陆续亮相。 • 百度与阿里对比 • 百度文心大模型:包含NLP大模型、CV大模型、跨模态大模型、生物计算大模型、行业大模型等。与Bing类似,文心一言有望优化C端用户搜索、创作体验;ToB方面,百度已开放大模型API接口,在文案、AI作画、开放域对话方面赋能企业。对于具体行业,百度推出文心行业大模型,以“行业知识增强”为核心特色。 阿里巴巴通义大模型:由通义-M6模型融合语言模型和视觉模型组成,率先应用在硬件终端天猫精灵和软件通义千问。通义大模型包括统一底座“M6-OFA”,三大通用模型“通义-M6”“通义-AliceMind”“通义-视觉大模型”,以及行业层面的不同垂直领域专业模型。在应用上,天猫精灵基于通义大模型推出拟声助手“鸟鸟分鸟”;对话式通义千问已经开始内测。 作为国内大模型训练规模最大的两家巨头,百度的文心大模型与阿里的通义千问形成对标,基于当前的发展也积累出了一些对比: C端功能势均力敌,B端服务能力阿里更具优势 首先,在面对用户提出的问题时,通义千问与文心一言在绝大多数情况都可以给出较为正确的回答,在面对C端用户的提问时,两个产品显示出了不相上下的实力。而在C端的势均力敌之下,阿里却祭出了同类竞品难以比拟的B端服务能力。 通义千问在C端用户之外,专门针对企业用户发出了邀请共测,企业可基于通义千问打造专属大模型,在企业专属的大模型空间中,既可以调动通义千问的全部能力,也可以结合企业自己的行业知识和应用场景,训练自己的企业大模型。 具体而言,除了通用场景之外,企业由于业务特性的不同,对于大模型服务有特殊需求和要求,通义大模型如果变成企业专属的大模型,可以支撑企业各式各样的应用与服务。 阿里云希望通过产品化的方式,满足企业专属大模型从生成到部署全生命周期的需求。 百度文心一言的核心优势是对中文的理解 对比来看,百度的优势体现在文心大模型在国内市场格局中较为领先。根据IDC发布《2022中国大模型发展白皮书》,百度文心大模型在市场格局中在产品能力、生态能力、应用能力等方面在国内较为领先。 文心一言核心优势是对中文的理解。百度作为中国语境的搜索龙头,拥有有更多的中文语料数据参与训练。比如,文心一言可以针对“洛阳纸贵”这种容易产生歧义的成语,给出较为贴切的解释。可以用成语写出藏头诗,用四川话读出文 章。 总的来说,两个模型在自然语言处理领域都有其独特的优势和不足,难以直接进行比较。但是,可以肯定的是,它们的出现和发展表明了中国在自然语言处理领域的实力和创新能力。 3.2 大模型背后的算力之争 人工智能的基础层是数据和算力,数据由服务器和光模块存储和运输;算力由CPU、GPU、FPGA、ASIC等芯片支撑。 根据前瞻产业研究院的数据,未来几年内,中国人工智能芯片市场规模将保持年均40%至50%的增长速度,到2024年,市场规模将达到785亿元。 数字经济时代,算力无处不在。以芯片、服务器、云计算提供商为主的市场主体,共同构成算力产业的大图景。 中国算力产业正在进入新一轮发展周期,有两个变量将影响中国企业的全球竞争力。第一个变量是2022年全面启动的“东数西算”政策,目的是让算力像水电一样便宜简单易用,同时希望中国企业在国际产业链占据主动权。第二个变量是AI让智能算力需求爆发,智能计算正在重塑云、软件、芯片产业,还在影响其他产业的智能化转型。 中国拥有算力资源的两大主力军分别是国资背景的三大电信运营商(中国移动、中国电信、中国联通)、民营背景的几大科技公司(阿里、腾讯、华为、百度),两大主力军背后,是一条包括设备服务商、芯片供应商、芯片制造商的庞大算力产业链。如果力量分散且失衡,中国算力产业会在关键时刻被拉开差距。 ◎ AI模型数据规模增长,AI算力需求井喷 当前算力距离AI应用存巨大鸿沟。根据Open AI数据,模型计算量增长速度远超人工智能硬件算力增长速度,存在万倍差距。英特尔表示,目前的计算、存储和网络基础设施远不足以实现元宇宙愿景,而要想实现真正的元宇宙,目前的计算能力需量要再提高1000倍。 ◎ AI芯片作为算力的核心,规模保持高速增长 AI芯片为算力的核心,专门用于处理AI应用中大量计算任务的模块。根据艾瑞咨询,2022年中国人工智能芯片市场规模达到396亿元,预计2027年市场规模将达到2164亿元,CAGR为40.5%。国内AI智算中心等数字化基础设施不断完善,AI模型复杂度和参数量的快速提升,对计算能力要求不断提高,高性能人工智能芯片市场将保持高速增长。 3.3 AI应用场景日渐丰富,产业链成长空间广阔 大模型借助“预训练+精调”等模式,用相比较大模型更少量的数据即可对下游应用赋能。预训练大模型基于海量数据的完成了“通识”教育。在具体应用场景下,借助“预训练+精调”等模式,应用模型用相比较大模型更少量的数据即可进行相应微调,高水平完成细分应用的任务。 企业由此借助AIGC技术提高生产效率,降低生产成本,利好下游垂类应用企业,目前AI应用领域:家居、金融、医疗、安防、交通、零售等; 伴随着ChatGPT的出现,带来的文本生成、代码生成、图像生成等能力将有效赋能至下游,减少人工成本,提高办公效率,有效助力企业降本增效;目前国内大厂加快多模态大模型的研发落地,并与众多企业合作,下游应用场景将不断拓展,未来人工智能具备广阔的市场空间。 04 未来发展展望 • 优异成绩令市场瞩目,各大机构纷纷上调了业绩预测 • 高盛、大摩、摩根大通、美银、瑞银、法巴银行等大型国际机构都给出了“买入”评级。各大机构观点表示,百度广告业务将随着经济复苏而回暖改善,2023年下半年或实现增速转正;智能云业务将继续领跑行业、保持高于行业的增速;智能驾驶则将成为长期业绩的积极推动因素,推动股价向上。 在本次财报中,百度董事会还授权了一份总值50亿美元的股票回购计划,有效期持续至2025年12月31日。2023年至今,百度股价已飙升近40%。 • 文心一言的发布至关重要,与百度智能云、搜索服务的结合将会给国内AIGC带来新的可能 • 目前,百度的主营业务仍是搜索,但AI正在为百度的营收提供有力支撑。 随着未来“文心一言”与现有业务实现有机结合,百度将迎来巨大红利期。生成式AI产品不仅能在短时间内带来DAU和用户使用时长的爆发,长期来看还将促进搜索的代际变革,丰富内容生态和供给,优化搜索体验,创造下一代流量入口。 云业务的发展趋势将是更加智能化,仅非带宽和算力的简单提升。文心大模型或颠覆云服务市场的现状,而生成式AI技术将为百度智能云业务打开新的成长和想象空间。另外,大模型技术未来与自动驾驶的结合还将进一步提升自动驾驶的安全性和可靠性,搭载到Apollo智驾平台则可以优化新一代人车语音交互体验。 百度非常重视生成式AI的机会,认为通过整合文心一言、百度App,特别是百度搜索,将增强用户体验。文心一言提供的新功能将有助于吸引新用户并提高用户参与度,同时也会提高广告商对百度的兴趣,推动长期收入增长。 • 百度在全球AI领域的布局具备前瞻性,新的增长值得期待 • 百度在全球大厂中率先发布对标ChatGPT的大模型产品文心一言,具备在全球AI领域布局的前瞻性。并且,文心一言内测一个多月,就完成了4次大的技术升级,大模型推理性能提升近10倍。 百度创始人、董事长兼首席执行官李彦宏在5月4日百度内部活动中表示,百度之所以能够在Google、Meta、Amazon等大厂之前率先发布生成式大模型产品,是因为百度在芯片、框架、模型、应用等四个层面做到全栈布局、层层领先。 李彦宏:未来文心一言将通过百度智能云对外提供服务,这将是百度“云智一体”战略的里程碑,也意味着云市场游戏规则的根本性改变。云服务从数宇时代跃迁至智能时代,之前选择云厂商更多看算力、存储等基础云服务,未来,更多会看框架好不好、模型好不好,以及模型、框架、芯片、应用之间的协同。 目前,已经有包括互联网、媒体、金融、保险、汽车、企业软件等行业的400多家头部企业宣布加入百度“文心一言”生态。随着文心一言等通用AI产品的技术迭代和成本降低,未来百度智能云将突破更多核心场景。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-06-12
马斯克讽刺人工智能炒作:什么“
机器
学习
” 其实就是统计
go
lg
...
在这张图片中,一位路人询问戴着“
机器
学习
”(marchine learning)面罩的人工智能:“嗨,人工智能。为什么你总是戴着那个面罩?”一边说一边动手揭开了那个面罩,结果看到里面是另一幅面孔,写着“统计”(statistics)。路人急忙放下面罩,说:“还是戴着吧。” 马斯克的这条推文引发了广泛关注,目前浏览量已超过2900万次,被转发近2.9万次,并收获了超过28万个点赞。
lg
...
金融界
2023-06-12
没有AI的Web3没有灵魂 ZKML如何重塑AI与区块链的关系
go
lg
...
b3将如何融合?近期,源自零知识证明和
机器
学习
的新兴结合体ZKML叙事走热,它将如何协同人工智能和Web3,建立一个可信任的、去中心化的未来? 一、AI需要Web3,反之亦然 CoinDesk的首席内容官迈克尔-凯西(Michael Casey)说:“将加密货币和人工智能视为不相关的技术是一个错误。它们是相辅相成的,彼此都在改进对方。” Web3、加密货币和区块链解决了自互联网开始以来一直存在的社会挑战,即在去中心化的环境中如何保持有价值的信息安全。它们通过采用分布式记录和激励机制的新系统来处理人类对信息的信任问题。这些系统帮助由不信任的陌生人组成的社区集体维护开放的数据记录,使他们能够在没有中间人的情况下分发和分享有价值或敏感的信息。 当前,我们正迅速迈向全面人工智能时代,而这一时代所带来的挑战是十分艰巨的。这些挑战涵盖了多个方面,从保护大型语言模型(LLMs)输入的版权,到避免其输出中出现错误的偏见,再到我们目前无法准确区分真实内容和由人工智能创造的虚假信息所带来的“说谎者红利”。要确保人类不受人工智能的负面影响,没有简单的解决方法可言。任何解决方案都不能依赖于过时的20 世纪监管和技术框架来解决这些问题。我们迫切需要一个去中心化的治理系统,以应对在这个新时代如何生产、验证和分享信息的挑战。 无论目前的Web3是否能提供所需的解决方案,区块链技术确实在解决这些问题方面发挥了一定的作用。不可篡改的账本使我们能够追踪图像和其他内容的来源,从而防止深度伪造。这种技术也可以用于验证
机器
学习
人工智能产品数据集的完整性。加密货币提供了一种无边界的数字支付方式,可用于向全球为人工智能培训做出贡献的人们提供报酬,如Bittensor等项目正在努力建立代币化的区块链-政府社区,以激励人工智能开发者构建对人类友好的模型。与此相反,私营公司拥有的人工智能系统通常将股东利益置于用户权益之上。 在这些想法能够实现并规模化之前,我们还有很长的路要走。我们将需要整合一系列其他技术,例如零知识证明(ZK)、同态加密、安全计算、数字身份和去中心化凭证(DID)、物联网等。此外,我们还需要解决隐私保护、惩罚不良行为、鼓励以人为本的创新智能以及多方立法监管等诸多挑战。 二、ZKML如何架起AI和区块链的桥梁 近期,源自零知识证明和
机器
学习
的新兴结合体ZKML被广泛讨论。目前,
机器
学习
(ML)的部署变得越来越复杂。很多企业主要依赖于亚马逊、谷歌、微软等服务提供商来部署复杂的
机器
学习
模型。然而,这些服务变得越来越难以审计和理解。作为AI服务的消费者,我们如何相信这些模型所提供预测的有效性呢? ZKML作为人工智能和区块链之间的桥梁,解决了AI模型和输入的隐私保护问题,同时确保了推理过程的可验证性。它提供了一种解决方案,使得可以在验证私有数据时使用公共模型,或在验证私有模型时使用公共数据。通过添加
机器
学习
功能,智能合约能够变得更加自主和动态,使其能够根据实时链上数据而不是静态规则进行处理。这样一来,智能合约将更具灵活性,能够适应更多场景,甚至是那些在最初创建合约时可能没有预料到的场景。 当前,
机器
学习
算法在区块链上广泛采用的困难之一是其高昂的计算成本。由于百万级别的浮点运算无法直接在以太坊虚拟机(EVM)上执行,因此在链上运行这些模型成为一个挑战。另外,
机器
学习
模型的信任问题也是一个障碍,因为模型的参数和输入数据集通常是私有的,而模型的算法和运行过程又如同一个不透明的“黑匣子”,这可能引发模型拥有者和模型使用者之间的信任问题。然而,通过ZKML技术,我们可以克服这些问题。ZKML允许任何人在链下运行一个模型,并生成一个简洁且可验证的证明,证明该模型确实产生了特定的结果。这个证明可以在链上发布,并由智能合约进行验证。这意味着模型使用者可以验证模型的结果,而无需了解模型的具体参数和运行细节,从而解决了信任问题。 通过上述图表,我们可以看到ZKML技术兼具计算完整性、启发式优化和隐私保护等特点。这种技术在Web3领域有着广泛的应用前景,并且正在快速发展。越来越多的团队和个人加入了这个领域,推动着各种潜力巨大的ZKML项目的开发。 三、ZKML项目分析 以下是一些潜力ZKML项目。 1 、Worldcoin Worldcoin正在应用ZKML,试图建立一个保护隐私的人格证明协议。World ID 用户将能够在他们的移动设备的加密存储中自我保管其生物特征(如虹膜),下载用于生成 IrisCode 的 ML 模型并在本地创建零知识证明,接收的智能合约可以证明其 IrisCode 已成功创建。 然后,可用于执行有用的操作,如成员资格认证和投票。他们目前使用具有安全enclave的可信运行环境来验证摄像头签名的虹膜扫描,但他们最终的目标是使用ZKP来证明神经网络对加密级别安全保障的正确推理,并且保证ML模型的输出不会泄露用户的个人数据。 2 、Modulus Labs Modulus Labs是ZKML领域中最多样化的项目之一,致力于相关研究的同时也在积极构建链上AI应用范例,Modulus Labs通过RockyBot(链上交易机器人)和Leela vs. the World(一种国际象棋游戏,所有人与经验证的Leela国际象棋引擎实例对决)展示了zkML的用例。该团队还涉足研究领域,撰写了The Cost of Intelligence(智能的成本)一文,对不同大小模型的各种验证系统的速度和效率进行了基准测试。 3 、Giza Giza是一种可以以一种完全无需信任的方法在链上部署AI模型的协议。它使用的技术栈包括用于
机器
学习
模型的ONNX格式,用于将这些模型转换为Cairo程序格式的Giza Transpiler,用于以可验证和确定性的方式执行模型的ONNX Cairo Runtime,以及用于部署和执行链上模型的Giza Model智能合约。Giza总体上属于
机器
学习
模型到证明的链上编译器,为链上AI的发展提供一个替代路径。 4 、Zkaptcha Zkaptcha 专注于 Web3 中的机器人问题,为智能合约提供captcha(验证码)服务,保护智能合约免受机器人攻击,使用零知识证明来创建抗女巫攻击的智能合约。目前,该项目使终端用户通过完成captcha验证码来产生一个人类工作的证明,captcha由链上验证者验证,并通过几行代码由智能合约访问。未来,Zkaptcha 将继承 zkML,推出类似于现有的 Web 2 验证码服务,甚至可以分析鼠标运动等行为,以确定用户是否为真人。 目前看来,zkML赛道还处于初级阶段,但我们有理由相信会 zkML 的力量可以给 crypto 带来更好的前景和发展,也期待该领域能出现更多样的产品,zk 技术和 crypto 为 ML 的运行提供安全可信的环境,而未来除了产品的创新之外,还可能会催生 crypto 商业模式的创新,因为在这个狂野和无政府的 Web 3 世界中,去中心化、crypto 技术和信任才是最最基础的设施。 结语 在日益复杂和不确定的数字世界中建立信任,一直是人工智能和Web3所面临的核心挑战。然而,将人工智能与Web3相融合却为建立一个信任、安全的去中心化未来带来了巨大希望。对于开发者、技术专家、政策制定者和整个社会而言,共同塑造人工智能和Web3的未来至关重要,我们或许可以创造出一个超乎想象的智能互联网时代。 Reference https://worldcoin.org/blog/engineering/intro-to-zkml#motivation-and-current-efforts-in-zkml https://github.com/worldcoin/awesome-zkml https://www.coindesk.com/consensus-magazine/2023/05/19/why-web3-and-the-ai-internet-belong-together/ 版权声明:如需转载欢迎加小助理微信沟通,未经允许转载、洗稿、我方将保留追究法律责任的权利。 免责声明:市场有风险,投资需谨慎。请读者在考虑本文中的任何意见、观点或结论时严格遵守所在地法律法规,以上内容不构成任何投资建议。 来源:金色财经
lg
...
金色财经
2023-06-11
被神话的GPT 造不出你的梦中神车
go
lg
...
hatGPT就运用了这项技术。那么,让
机器
学习
司机的驾驶习惯,就不是一件很难的事情。 特斯拉的影子模式,就是把真人司机的驾驶数据,投喂给
机器
学习
。通过比对人类驾驶员行为,来达到训练算法的目的。 GPT掀起新一轮AI热潮后,对行业造成的一个认知冲击是,通过把模型的参数规模不断变大,数据量指数型增加,也就是所谓的大模型,在达到某个临界点后,模型会突然变得很聪明。 过去,模型在训练阶段需要的数据,是经过人工标注的。以自动驾驶为例,数据标注员通过大量的图片标注,告诉机器什么是猫,什么是狗,猫和狗各有多少种类。标注员就像是机器的老师,一遍一遍教会它认识这个世界。 问题是,老师没教过的东西,机器还是不会。典型的是特斯拉曾多次发生自动驾驶事故,车辆撞上侧翻的大卡车,因为机器识别不了。 和高资本创始合伙人何宇华对深途举过这样一个例子:广州的夏季雨天频繁,在一些灯光比较昏暗的场景下,空中会有大量的飞虫。当汽车驶过时,灯光打过去,可能会有数以千计的飞虫撞向车头。在这种情况下,汽车的自动驾驶感知系统,可能会误认为是一堵墙。 自动驾驶系统不能穷尽所有的corner case(极端场景),是其发展路上的一大难关。 ChatGPT抓取的是全网未标记的数据。在自监督学习中,数据本身被用作监督信号,而不是依赖于人工标记的标签。有一天人们发现,大模型在消化这些数据的过程中,突然具备了举一反三的能力。 那么,如果自动驾驶大模型也能无监督地学习人类驾驶行为,不需要“老师”手把手地教,是不是意味着,系统摇身一变,成了“老司机”? GPT“开车”,还不靠谱 梦想很美好,实现梦想的路总是很骨感。 类似ChatGPT的AI大模型要在自动驾驶领域发挥威力,目前来看至少有如下几个问题需要解决。 首先是数据来源。 ChatGPT的数据来源非常丰富,包括维基百科、书籍、新闻文章、科学期刊等等,相当于全网公开数据都是它的养料。 自动驾驶不同。驾驶员的驾驶数据、车辆行驶数据不公开,很多还涉及隐私。汽车厂商、自动驾驶公司各自为政,数据封闭不流通,这让获取数据变得困难。没有数据,自动驾驶就是无源之水。 联想创投总裁贺志强对深途说,自动驾驶的核心是要有数据,数据对训练模型非常重要。比亚迪这样的主机厂有数据,但算法还需要打磨,“蔚小理”等造车新势力擅长算法,但车的销量还不够。既有数据也有算法的公司,才能充分用好大模型。 其次是系统的计算部署方式有限制。 余凯认为,OpenAI、ChatGPT是在云端的计算,在云端有充分的能量供给、电源供给,同时有非常好的系统,可是如果在车上依赖的是电池,依赖的是车端的散热,那么这个挑战是很大的,意味着自动驾驶不能用那么大的模型、那么大的计算。 大模型对算力的消耗,导致云计算厂商成为这波AI热潮中第一批吃到红利的玩家。大厂开卷云计算,也是为大模型开路。但是在车端,这会是一个矛盾。 更大的问题是,大模型的可靠性尚未验证。 使用过ChatGPT的人知道,ChatGPT有时候会胡说八道,时对时错。这在业内被称为幻觉(hallucination)倾向,即产生完全没有出处的非真实内容。大模型会编造内容,而不在意内容的真实性和准确性。 聊天可以胡说八道,自动驾驶不可以。任何一次错误的输出,导致的结果都可能是致命的。 “ChatGPT取得巨大进展,但自动驾驶迟迟没有到来,因为自动驾驶特别是无人驾驶,可能容错率就是零,那是人命关天的事情。”余凯说。 曾在硅谷某AI创业公司担任COO的龙志勇认为,不可控、不可预测和不可靠,是大模型商业化最大的威胁。典型表现是大模型有幻觉倾向。 现在,要让自动驾驶系统学会选择和辨别,并稳定地输出最优解,还不太现实。 一家人工智能公司的内部人士对深途说:“视觉感知在算法层面的确有不少突破。但车这种场景,要求太高了,我个人不觉得短期能有大的突破。可以关注一下特斯拉的动向。” 然而最近科技圈有一股风气,大大小小的公司,都要蹭一把GPT的热点。有一些汽车厂商,宣布即将应用类似GPT的技术,一堆炫酷的概念让人傻傻分不清楚。 比如某传统车企旗下的自动驾驶公司,就发布了一个自动驾驶生成式大模型,要用这个模型来训练自动驾驶,号称“行业首例”。 一位长期关注智能汽车赛道的投资人,询问一位行业大佬怎么看该模型,对方就回了四个字:“TM扯淡。” “完全就是一个PR行为。”这位投资人对深途评价。 自动驾驶,会被推倒重来吗? 在特斯拉的带动下,再叠加今年兴起的AI浪潮,自动驾驶行业逐渐向大模型、大算力、大数据方向不断靠近。 大模型对自动驾驶的影响,目前还不够剧烈,但嗅觉敏锐的人已经呈现出一种矛盾心态。 就像当年特斯拉利用Transformer将多摄像机数据从图像空间转化为BEV空间,为此不惜将原有架构推翻,重写算法。现在大模型的应用,也可能意味着原有自动驾驶算法,会被推倒重来。 贺志强认为,大模型会对自动驾驶有巨大影响。以前自动驾驶用到很多小模型,现在变成大模型,可能需要重新来一遍。自动驾驶行业会重新洗牌。 一家AI芯片公司的自动驾驶总监赵东翔对深途说,整体端到端更改,等于重新做。 洗牌对新入局者是机会,对领先者是威胁。弯道超车的故事,往往发生在技术急速变革时期。在技术一日千里的时代,在旧路线投入越多,沉没成本可能越大,转身越困难。对于整车厂或自动驾驶公司而言,要拥抱一项新技术,不仅要考虑效果,还要考虑成本。 赵东翔表示,就当前阶段而言,自动驾驶变换技术路线没意义,“现在行业技术能力也不差,大家花那么多钱做了那么久,没有大幅度提高的话没有换的动力。” 在去年底的AI DAY上,特斯拉将BEV升级到占用网络(occupancy network),泛化能力得到进一步提升。通过占用网络,特斯拉的自动驾驶感知系统可以不需要知道看到的物体是什么,就可以判断是否需要躲避,由此解决了更多长尾问题。 不论何种技术路线,现在都处于快速变化迭代中。过去的小模型可能会被大模型替代,今天的大模型也可能在未来被某种新物种替代。 但不管怎样,蹭热点、制造噱头的做法,是无益于技术进步的。“蹭热度是陋习,踏踏实实做产品才有用。”赵东翔说。 自动驾驶真正的“王炸”,还远没有到来。我们需要做的,是对每一轮技术变革保持敬畏之心。被神话的GPT,造不出你的梦中神车,但至少,变化已经发生了。 来源:金色财经
lg
...
金色财经
2023-06-10
没有AI的Web3没有灵魂 ZKML如何重塑AI与区块链的关系
go
lg
...
b3将如何融合?近期,源自零知识证明和
机器
学习
的新兴结合体ZKML叙事走热,它将如何协同人工智能和Web3,建立一个可信任的、去中心化的未来? 一、AI需要Web3,反之亦然 CoinDesk的首席内容官迈克尔-凯西(Michael Casey)说:“将加密货币和人工智能视为不相关的技术是一个错误。它们是相辅相成的,彼此都在改进对方。” Web3、加密货币和区块链解决了自互联网开始以来一直存在的社会挑战,即在去中心化的环境中如何保持有价值的信息安全。它们通过采用分布式记录和激励机制的新系统来处理人类对信息的信任问题。这些系统帮助由不信任的陌生人组成的社区集体维护开放的数据记录,使他们能够在没有中间人的情况下分发和分享有价值或敏感的信息。 当前,我们正迅速迈向全面人工智能时代,而这一时代所带来的挑战是十分艰巨的。这些挑战涵盖了多个方面,从保护大型语言模型(LLMs)输入的版权,到避免其输出中出现错误的偏见,再到我们目前无法准确区分真实内容和由人工智能创造的虚假信息所带来的“说谎者红利”。要确保人类不受人工智能的负面影响,没有简单的解决方法可言。任何解决方案都不能依赖于过时的20世纪监管和技术框架来解决这些问题。我们迫切需要一个去中心化的治理系统,以应对在这个新时代如何生产、验证和分享信息的挑战。 无论目前的Web3是否能提供所需的解决方案,区块链技术确实在解决这些问题方面发挥了一定的作用。不可篡改的账本使我们能够追踪图像和其他内容的来源,从而防止深度伪造。这种技术也可以用于验证
机器
学习
人工智能产品数据集的完整性。加密货币提供了一种无边界的数字支付方式,可用于向全球为人工智能培训做出贡献的人们提供报酬,如Bittensor等项目正在努力建立代币化的区块链-政府社区,以激励人工智能开发者构建对人类友好的模型。与此相反,私营公司拥有的人工智能系统通常将股东利益置于用户权益之上。 在这些想法能够实现并规模化之前,我们还有很长的路要走。我们将需要整合一系列其他技术,例如零知识证明(ZK)、同态加密、安全计算、数字身份和去中心化凭证(DID)、物联网等。此外,我们还需要解决隐私保护、惩罚不良行为、鼓励以人为本的创新智能以及多方立法监管等诸多挑战。 二、ZKML如何架起AI和区块链的桥梁 近期,源自零知识证明和
机器
学习
的新兴结合体ZKML被广泛讨论。目前,
机器
学习
(ML)的部署变得越来越复杂。很多企业主要依赖于亚马逊、谷歌、微软等服务提供商来部署复杂的
机器
学习
模型。然而,这些服务变得越来越难以审计和理解。作为AI服务的消费者,我们如何相信这些模型所提供预测的有效性呢? ZKML作为人工智能和区块链之间的桥梁,解决了AI模型和输入的隐私保护问题,同时确保了推理过程的可验证性。它提供了一种解决方案,使得可以在验证私有数据时使用公共模型,或在验证私有模型时使用公共数据。通过添加
机器
学习
功能,智能合约能够变得更加自主和动态,使其能够根据实时链上数据而不是静态规则进行处理。这样一来,智能合约将更具灵活性,能够适应更多场景,甚至是那些在最初创建合约时可能没有预料到的场景。 当前,
机器
学习
算法在区块链上广泛采用的困难之一是其高昂的计算成本。由于百万级别的浮点运算无法直接在以太坊虚拟机(EVM)上执行,因此在链上运行这些模型成为一个挑战。另外,
机器
学习
模型的信任问题也是一个障碍,因为模型的参数和输入数据集通常是私有的,而模型的算法和运行过程又如同一个不透明的“黑匣子”,这可能引发模型拥有者和模型使用者之间的信任问题。 然而,通过ZKML技术,我们可以克服这些问题。ZKML允许任何人在链下运行一个模型,并生成一个简洁且可验证的证明,证明该模型确实产生了特定的结果。这个证明可以在链上发布,并由智能合约进行验证。这意味着模型使用者可以验证模型的结果,而无需了解模型的具体参数和运行细节,从而解决了信任问题。 通过上述图表,我们可以看到ZKML技术兼具计算完整性、启发式优化和隐私保护等特点。这种技术在Web3领域有着广泛的应用前景,并且正在快速发展。越来越多的团队和个人加入了这个领域,推动着各种潜力巨大的ZKML项目的开发。 三、ZKML项目分析 以下是一些潜力ZKML项目。 1、Worldcoin Worldcoin正在应用ZKML,试图建立一个保护隐私的人格证明协议。World ID 用户将能够在他们的移动设备的加密存储中自我保管其生物特征(如虹膜),下载用于生成 IrisCode 的 ML 模型并在本地创建零知识证明,接收的智能合约可以证明其 IrisCode 已成功创建。 然后,可用于执行有用的操作,如成员资格认证和投票。他们目前使用具有安全enclave的可信运行环境来验证摄像头签名的虹膜扫描,但他们最终的目标是使用ZKP来证明神经网络对加密级别安全保障的正确推理,并且保证ML模型的输出不会泄露用户的个人数据。 2、Modulus Labs Modulus Labs是ZKML领域中最多样化的项目之一,致力于相关研究的同时也在积极构建链上AI应用范例,Modulus Labs通过RockyBot(链上交易机器人)和Leela vs. the World(一种国际象棋游戏,所有人与经验证的Leela国际象棋引擎实例对决)展示了zkML的用例。该团队还涉足研究领域,撰写了The Cost of Intelligence(智能的成本)一文,对不同大小模型的各种验证系统的速度和效率进行了基准测试。 3、Giza Giza是一种可以以一种完全无需信任的方法在链上部署AI模型的协议。它使用的技术栈包括用于
机器
学习
模型的ONNX格式,用于将这些模型转换为Cairo程序格式的Giza Transpiler,用于以可验证和确定性的方式执行模型的ONNX Cairo Runtime,以及用于部署和执行链上模型的Giza Model智能合约。Giza总体上属于
机器
学习
模型到证明的链上编译器,为链上AI的发展提供一个替代路径。 4、Zkaptcha Zkaptcha 专注于 Web3 中的机器人问题,为智能合约提供captcha(验证码)服务,保护智能合约免受机器人攻击,使用零知识证明来创建抗女巫攻击的智能合约。目前,该项目使终端用户通过完成captcha验证码来产生一个人类工作的证明,captcha由链上验证者验证,并通过几行代码由智能合约访问。未来,Zkaptcha 将继承 zkML,推出类似于现有的 Web 2 验证码服务,甚至可以分析鼠标运动等行为,以确定用户是否为真人。 目前看来,zkML赛道还处于初级阶段,但我们有理由相信会 zkML 的力量可以给 crypto 带来更好的前景和发展,也期待该领域能出现更多样的产品,zk 技术和 crypto 为 ML 的运行提供安全可信的环境,而未来除了产品的创新之外,还可能会催生 crypto 商业模式的创新,因为在这个狂野和无政府的 Web 3 世界中,去中心化、crypto 技术和信任才是最最基础的设施。 结语 在日益复杂和不确定的数字世界中建立信任,一直是人工智能和Web3所面临的核心挑战。然而,将人工智能与Web3相融合却为建立一个信任、安全的去中心化未来带来了巨大希望。对于开发者、技术专家、政策制定者和整个社会而言,共同塑造人工智能和Web3的未来至关重要,我们或许可以创造出一个超乎想象的智能互联网时代。 Reference https://worldcoin.org/blog/engineering/intro-to-zkml#motivation-and-current-efforts-in-zkml https://github.com/worldcoin/awesome-zkml https://www.coindesk.com/consensus-magazine/2023/05/19/why-web3-and-the-ai-internet-belong-together/ 来源:金色财经
lg
...
金色财经
2023-06-10
撤离中国!微软正将顶尖中国AI研究人员调往加拿大:“派到中国有风险”
go
lg
...
系,但把我们最优秀的研究人员,尤其是在
机器
学习
领域工作的研究人员派到中国是有风险的。”“人才可能会被中国公司挖走,员工可能会被当局骚扰。我们在内部会议上讨论了这些风险。” 另一名同样申请加拿大签证的微软研究人员表示:“也许在美国和中国以外的第三个国家,我们可以重拾过去那种充满活力的科技讨论。” 微软表示:“我们正在温哥华建立一个新的实验室,该实验室将在组织上与MSRA保持一致,旨在更好地与温哥华的工程团队合作。该实验室的工作人员将来自世界各地的其他MSR实验室,包括中国。” 任何将顶尖人工智能研究人员迁往海外的决定都有可能引发北京方面的愤怒,北京一直试图通过慷慨的资助和享有声望的教学职位,吸引在海外工作的中国高科技研究人员回到内地。 由台湾计算机科学家李开复创立的MSRA一直是中国科技人才的重要培训中心。其校友名单包括阿里云创始人王坚、商汤科技首席执行官徐立和人工智能集团旷视科技负责人印奇。 “MSRA对人工智能的贡献是惊人的,”一位曾与微软合作过的中国科技顾问表示。“它已经在这个领域工作了很长时间。许多前同事都加入了中国的科技公司,推动了中国整个人工智能生态系统的发展。” 微软进入中国已有30多年的历史。在谷歌(Google)、eBay、Facebook和优步(Uber)等其他西方科技集团因竞争或监管而被迫退出之际,微软在中国仍保持着强大的影响力。 微软开发了受欢迎的本地化产品,包括其旗舰Office和Windows软件包,以及必应(Bing)搜索引擎。 根据微软去年9月发布的一篇帖子,微软在中国拥有9000名员工,其中逾80%是软件工程师或从事研发工作。该公司还宣布计划在中国再招聘1000名员工。 但中国有很大一部分工程人才从事全球产品的研发,如果中美关系进一步恶化,这可能会给这家美国公司带来越来越大的问题。一位接近该公司的人士表示,未来这些有才华的工程师中,有一些可能也会被调离中国。 今年5月,微软旗下的领英(LinkedIn)在宣布关闭面向中国用户的求职网站InCareer后,对其中国办事处进行了裁员。InCareer在2021年取代了这家专业社交网站。 MSRA是中美两国在高科技研究领域合作的一个罕见例子。但两名研究人员表示,这两个大国之间不断恶化的关系,以及对各自科技野心的偏执加剧,缩小了它们与西方同行合作的能力,并使它们受到中国官员更严格的审查。 在英国《金融时报》报道该研究所与一所中国军方管理的大学合作进行可用于监视和审查的人工智能研究后,该研究所受到了华盛顿方面的批评。 “过去两年,人工智能已成为一个所谓的敏感领域,”一位申请加拿大签证的微软中国研究人员表示。“以前,作为一名在美国机构工作的中国人,意味着可以从两国获得大量资源。交流的空间正在缩小。”
lg
...
夏洛特
1评论
2023-06-10
AI训练中的公平
go
lg
...
平来源-----使用不平衡的数据集训练
机器
学习
模型 在许多情况下,获取代表性数据可能过于困难。同时公平性算法对于输入的变化特别敏感。数据挑战包括在数据标注时的错误、测量误差、偏差和样本不平衡。数据标签错误是实现公平
机器
学习
严重障碍之一。数据类别不平衡也会影响不公平性学习效果。只有通过尽量准确的标注数据,以及针对训练数据的特点设计
机器
学习
算法实现公平性。同时,建设评估公平性算法的数据集也很关键。 如果使用不平衡的数据集训练
机器
学习
模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的计算存在严重风险。但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的
机器
学习
模型在对不平衡数据进行训练时实际上会编码偏差。即使使用先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 ●解决方案----公平性嵌入到
机器
学习
模型中 公平性表示学习包含数据和模型的公平性表示。数据的公平性表示,是指一方面能够表达出包含数据点相关的大量有用信息,同时这一表示是公平的,即包含有关敏感属性信息,目的是防止
机器
学习
算法产生歧视性行为。模型的公平性表示,是指把公平性嵌入到
机器
学习
模型中,成为不可分割的一部分。从算法的基本定义出发,用输入、过程及输出不同阶段描述解决问题的策略机制。这使模型即使在不公平数据上进行训练也能产生公平的输出,这一点尤其重要,因为很少有平衡良好的数据集用于
机器
学习
。 Meta(前facebook)在经历AI标注歧视事件与Oasis lab建立合作伙伴关系,并推出一个安全多方计算 (SMPC) 来评估 Meta 产品的公平性,同时保护人们的隐私。由第三方调查提供商收集的数据将以某种方式与第三方服务商秘密共享,这样服务商或 Meta 都无法获悉用户的调查回答。然后,促进者使用来自 AI 模型的加密计算数据计算测量值,这些数据由 Meta 以加密方式共享,每个促进者的组合、去识别化结果由 Meta 重组为聚合公平性测量结果。该平台使用的加密技术使 Meta 能够衡量偏见和公平性,同时为贡献敏感人口统计测量数据的个人提供高水平的隐私保护。 ●结语 AI已经应用在人们生活的方方面面,如何摒弃偏见,实现AI公平将是AI能在人们的经济生活中正确发挥作用的重大挑战。Meta 和Oasis Lab合作的新平台是AI公平的新的尝试。期待他们的合作,为更公平、更包容的社会构建负责任的人工智能和负责任的数据使用。 参考资料:https://www.oasisprotocol.org/blog/web3-responsible-ai-by-oasis https://ai.facebook.com/blog/assessing-fairness-of-our-products-while-protecting-peoples-privacy/) 来源:金色财经
lg
...
金色财经
2023-06-10
AI公平的实现
go
lg
...
平来源-----使用不平衡的数据集训练
机器
学习
模型 在许多情况下,获取代表性数据可能过于困难。同时公平性算法对于输入的变化特别敏感。数据挑战包括在数据标注时的错误、测量误差、偏差和样本不平衡。数据标签错误是实现公平
机器
学习
严重障碍之一。数据类别不平衡也会影响不公平性学习效果。只有通过尽量准确的标注数据,以及针对训练数据的特点设计
机器
学习
算法实现公平性。同时,建设评估公平性算法的数据集也很关键。 如果使用不平衡的数据集训练
机器
学习
模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的计算存在严重风险。但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的
机器
学习
模型在对不平衡数据进行训练时实际上会编码偏差。即使使用先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 ●解决方案----公平性嵌入到
机器
学习
模型中 公平性表示学习包含数据和模型的公平性表示。数据的公平性表示,是指一方面能够表达出包含数据点相关的大量有用信息,同时这一表示是公平的,即包含有关敏感属性信息,目的是防止
机器
学习
算法产生歧视性行为。模型的公平性表示,是指把公平性嵌入到
机器
学习
模型中,成为不可分割的一部分。从算法的基本定义出发,用输入、过程及输出不同阶段描述解决问题的策略机制。这使模型即使在不公平数据上进行训练也能产生公平的输出,这一点尤其重要,因为很少有平衡良好的数据集用于
机器
学习
。 Meta(前facebook)在经历AI标注歧视事件与Oasis lab建立合作伙伴关系,并推出一个安全多方计算 (SMPC) 来评估 Meta 产品的公平性,同时保护人们的隐私。由第三方调查提供商收集的数据将以某种方式与第三方服务商秘密共享,这样服务商或 Meta 都无法获悉用户的调查回答。然后,促进者使用来自 AI 模型的加密计算数据计算测量值,这些数据由 Meta 以加密方式共享,每个促进者的组合、去识别化结果由 Meta 重组为聚合公平性测量结果。该平台使用的加密技术使 Meta 能够衡量偏见和公平性,同时为贡献敏感人口统计测量数据的个人提供高水平的隐私保护。 ●结语 AI已经应用在人们生活的方方面面,如何摒弃偏见,实现AI公平将是AI能在人们的经济生活中正确发挥作用的重大挑战。Meta 和Oasis Lab合作的新平台是AI公平的新的尝试。期待他们的合作,为更公平、更包容的社会构建负责任的人工智能和负责任的数据使用。 参考资料:https://www.oasisprotocol.org/blog/web3-responsible-ai-by-oasis https://ai.facebook.com/blog/assessing-fairness-of-our-products-while-protecting-peoples-privacy/) 来源:金色财经
lg
...
金色财经
2023-06-10
OpenEx交易所展示全球化精英团队 积极布局未来金融市场
go
lg
...
rcari等公司工作,是一名热衷于利用
机器
学习
推动远见和有影响力解决方案的软件工程师,专注于数据分析、技术和数据驱动的用户需求,带给OpenEx丰富的产品经验和独到的视角。 从OpenEx交易所成立之初,就以数字世界的“赋能者”、“服务者”和“布道者”为定位。OpenEx深知,没有任何一个交易所可以包揽所有的功能和服务,因此,OpenEx选择与社区一同成长,共同服务全球的用户。 总的来说,OpenEx交易所的全球化精英团队正以其丰富的行业经验、深厚的专业素养和共享的愿景,共同推动这个平台走向更为有序和健康的发展,向全球用户提供更多、更好的服务。这将深化OpenEx在全球金融市场的影响力,并有望推动其在未来的金融科技领域取得更大的突破。 来源:金色财经
lg
...
金色财经
2023-06-08
东方国信:公司积极开拓合作生态,长期以来一直是华为的优质合作伙伴
go
lg
...
Cloud就是一套MLOps工具,对
机器
学习
模型进行持续调优、集成、部署、评价、回测。支持算法模型持续集成优化,简化算法人员工程人员工作量,提升优化效率。目前在中国联通集团支持全集团算法模型开发部署优化已经三年,平台集成运营商O、B两侧数据,沉淀300多个线上业务模型,涵盖经营分析预测预警、营销客群、策略、产品自动匹配、异业产品营销、客服产品问题挖掘服务质量优化等多个运营场景,省分调用平台模型,营销触达月用户数过千万,年触达1.2亿。谢谢! 投资者:贵公司有数字水印技术吗?能否介绍? 东方国信董秘:您好,感谢您的关注。公司已有数字水印技术,对于模型输出可以做防伪追踪。谢谢! 东方国信2023一季报显示,公司主营收入5.01亿元,同比上升6.77%;归母净利润4596.42万元,同比上升11.04%;扣非净利润1541.8万元,同比下降47.29%;负债率18.66%,投资收益81.03万元,财务费用719.3万元,毛利率40.57%。 该股最近90天内共有3家机构给出评级,买入评级2家,增持评级1家;过去90天内机构目标均价为14.0。近3个月融资净流入2.14亿,融资余额增加;融券净流入1039.86万,融券余额增加。根据近五年财报数据,证券之星估值分析工具显示,东方国信(300166)行业内竞争力的护城河良好,盈利能力较差,营收成长性较差。财务可能有隐忧,须重点关注的财务指标包括:应收账款/利润率、应收账款/利润率近3年增幅、经营现金流/利润率。该股好公司指标0.5星,好价格指标1星,综合指标0.5星。(指标仅供参考,指标范围:0 ~ 5星,最高5星) 东方国信(300166)主营业务:为客户提供企业级大数据、云计算、工业互联网等平台、产品、服务及行业整体解决方案。 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-06-07
上一页
1
•••
183
184
185
186
187
•••
240
下一页
24小时热点
2009年来“最冷”一年!又一数据传来“坏消息” 全球市场“跌”声再起、黄金一枝独秀
lg
...
中国出口突传坏消息!彭博:给本已面临年末放缓风险的中国经济雪上加霜
lg
...
特朗普政府祭出大动作!这两种重要金属被列入“关键矿产”清单 恐被征关税
lg
...
“就业末日论”?!一份往常被忽视的报告引爆市场 这张图堪称灾难预言
lg
...
特朗普关税果然伤害了中国!AI牛市面临大考,一则数据令美联储降息“起死回生”
lg
...
最新话题
更多
#AI热潮:从芯片到资本的竞赛#
lg
...
25讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#VIP会员尊享#
lg
...
1989讨论
#比特日报#
lg
...
14讨论
#Web3项目情报站#
lg
...
6讨论