全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
盛天网络:我司与《三国志•战棋版》没有IP监修合作
go
lg
...
户兴趣、行为标签构建用户多维画像,进行
深度
学习
和协调精准过滤等十几种算法结合,智能推荐给用户精准内容服务和社交匹配用户。 在不久的未来我们也会考虑应用相关算法和技术,按照用户或者主播的需求生成声音,提高声音类产品的生成效率,更好更快的满足平台使用者的需求。当前带带平台已经上线了声鉴玩法,欢迎大家下载带带体验试玩。 投资者:你好,公司未来可以在发展酒店元宇宙的基础上,发展家庭式VR+AR元宇宙平台吗? 盛天网络董秘:我们期望在线下场景打造“元宇宙接入点”,建设玩家社区与体验场,提供虚拟与现实结合的独特娱乐体验,降低用户理解和进入元宇宙的门槛,并激活线下场景的活力。当前在电竞酒店以及文旅场景的相关工作正在稳步推进,家庭场景也是线下场景的一种,不存在技术壁垒。 投资者:您好,贵公司有可能将IP形象或者游戏植入ChatGPT功能吗? 盛天网络董秘:ChatGPT用于游戏中,不仅能够让智能NPC和玩家自由生成对话,还能基于对话内容自主给出有逻辑的行为反馈,还可以通过AI随机生成任务、地图关卡,帮助人物形象塑造,有效提升游戏的研发效率。我们在密切关注这一技术在游戏中的应用测试。 盛天网络2022三季报显示,公司主营收入11.83亿元,同比上升23.26%;归母净利润1.9亿元,同比上升71.37%;扣非净利润1.89亿元,同比上升73.44%;其中2022年第三季度,公司单季度主营收入4.5亿元,同比上升32.44%;单季度归母净利润7376.31万元,同比上升80.05%;单季度扣非净利润7312.92万元,同比上升83.34%;负债率24.22%,投资收益100.35万元,财务费用-1434.72万元,毛利率27.0%。 该股最近90天内共有4家机构给出评级,买入评级3家,增持评级1家;过去90天内机构目标均价为18.7。根据近五年财报数据,证券之星估值分析工具显示,盛天网络(300494)行业内竞争力的护城河一般,盈利能力一般,营收成长性良好。财务相对健康,须关注的财务指标包括:应收账款/利润率。该股好公司指标3星,好价格指标2星,综合指标2.5星。(指标仅供参考,指标范围:0 ~ 5星,最高5星) 盛天网络(300494)主营业务:互联网娱乐平台的设计、开发、推广和基于此平台上的网络广告推广及互联网增值服务,以及游戏联合运营业务 以上内容由证券之星根据公开信息整理,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-03-05
ChatGPT思考:探索智能的极限
go
lg
...
的大弟子,从 2007 年就开始研究
深度
学习
。他的 citation 有 37 万,发过的文章精准踩中了过去十年 Deep Learning 的所有关键节点。即使是如此强大的团队,从 GPT 2 到 GPT 3.5 也花了四年的时间,它的科学与工程的难度可想而知。 同时,初代 ChatGPT,是 OpenAI 在 GPT 3.5 的基础模型上,花了两星期时间对着 dialog 做 finetuning 之后随手扔出来的 demo。这里真正强的并不是 ChatGPT 这一个产品,而是底下的 GPT 3.5 基础模型。这个模型还在不断地演化,GPT 3.5 系列在 2022 年更新了三个大版本,每个大版本都显著强于前一个版本;同样地,ChatGPT 发布两个月一共更新了四个小版本,每个小版本都在单个的维度上比前一个版本有着明显的改进。OpenAI 的所有模型都在持续不断的演化,随时间推移越来越强。 这也就意味着,如果只盯着当前 ChatGPT 这一个产品看,无异于刻舟求剑。当 ChatGPT 出现的时候,它对已有的语音助手们形成了降维打击;如果看不到基础模型的演化,即使花个一两年辛辛苦苦做出一个类似的东西,那时候 OpenAI 的基础模型也在继续变强,如果他们接着产品化,以新的更强的基础模型 finetune 到一个更强的产品,难道要再被降维打击一次吗? 刻舟求剑的做法是行不通的。 做中国的 OpenAI 第二种答案是,要做中国的 OpenAI。给出这个答案的玩家,跳出了经典中文互联网产品思维。他们不止看到单个产品,而且还看到了这个产品背后,基础模型不断演化的强大驱动力,来源于尖端人才的密度和先进的组织架构。 • 尖端人才的密度:不是一个人集资源带队然后把任务按层级打包分配给底下的人,而是一群顶级的集 science 和 engineering 于一身的人们共同协作; • 先进的组织架构:Language 团队与 Alignment 的团队相互合作迭代,然后底下 scaling 团队和 data 团队帮忙提供基础设施,每个 team 都非常小,但目标明确路径清晰,高度集中资源,朝着 AGI 进发。 所以,如果要做这件事情,不只要看到产品,还要看到它背后的人才团队和组织架构;按稀缺程度排名的话,人 > 卡 > 钱。 但这里的问题是,不同的土壤对创新的鼓励程度是不一样的。在 OpenAI 刚创立的 2015 年,它的投资者们都相信 AGI ,即使当时看不到什么盈利的点。现在 GPT 做出来了,国内的投资者们也都信了 AGI,但相信的点或许也不一样:到底是信 AGI 能挣钱,还是信 AGI 能推动人类发展? 更进一步地,即使 OpenAI 就产生在这里,明天就出现,但他们跟微软达成的 deal,能否跟国内的云计算厂商达成呢?大模型的训练和推理都需要极大的成本,需要一个云计算引擎作为支撑。微软可以倾尽所有,让整个 Azure 给 OpenAI 打下手,这个换到国内,阿里云有可能给一个创业公司打下手吗? 组织架构很重要,只有尖端的人才和先进的组织架构才能推动智能的不断迭代与进化;但它同样需要跟所在的土壤做适配,寻找可以 flourish 的方法。 探索智能的极限 第三种答案是,要探索智能的极限。这是我听到的最好的答案。它远超刻舟求剑式的经典互联网产品思维,也看到了组织架构和尖端人才密度的重要性,并且更重要地是它看到了未来,看到了模型演化与产品迭代,思考着如何把最深刻,最困难的问题用最创新的方法来解决。 这就涉及到了思考大模型的极限思维。 02. 极限思维 观察现在的 ChatGPT / GPT-3.5 ,它明显是一个中间状态,它还有很多显著可以加强,并且马上就能加强的点,包括: • 更长的输入框:开始的时候,GPT 3.5 的上下文最长到八千个 token;现在的 ChatGPT 上下文建模的长度似乎已经过万。并且这个长度明显可以接着增长,在融入 efficient attention 和 recursive encoding 的方法之后,context length 应该可以接着 scale 到十万,甚至百万的长度; • 更大的模型,更大的数据:模型的大小还没有到极限,MoE 可以接着把模型 scale 到 T 的量级;数据的大小还没有到极限,人类反馈的数据每天都在增长; • 多模态:在增加了多模态数据(音频,图片),特别是视频数据之后,总体与训练数据的大小可以再增大两个量级,这个可以让已知的能力接着按 scaling law 线性增加,同时还有可能继续出现新的涌现能力。比如可能模型在看过各种几何形状的图片,以及看过代数题之后,或许会自动学会做解析几何; • 专业化:现有的模型在文科上大概相当于研究生水平,但在理科上相当于高中或大一大二的学生水平;已有的工作已经证明我们可以把模型的技能点从一个方向挪到另一个方向,这就意味着即使不做任何 scaling,我们依然可以在通过牺牲其他方面能力的情况下,把模型朝着目标方向推进。比如牺牲掉模型的理科能力,把它的文科能力从研究生推到专家教授的水准。 以上四点只是现阶段可以看到的,马上就可以加强但暂时还没有加强的点,随着时间的推移和模型的演化,会有更多可以被 scale 的维度进一步体现出来。这意味着我们需要有极限的思维,思考当我们把能够拉满的维度全部拉满的时候,模型会是什么样子。 能够拉满全部拉满 模型的输入框可以接着加长,模型的大小可以继续增大,模型的数据可以继续增多,多模态的数据可以融合,模型的专业化程度可以继续增高,所有这些维度可以继续往上拉,模型还没有到极限。极限是一个过程,在这个过程中模型的能力会怎样发展呢? • Log-linear 曲线:一部分能力的增长会遵循 log-linear 的曲线,比如说某项任务的 finetuning。随着 finetune 数据的指数增长,模型所对应的 finetune 的任务的能力会线性增长。这部分能力会可预测地变得更强; • Phase change 曲线:一部分能力会随着 scaling 继续涌现,比如说上文中的模型做解析几何的例子。随着可以被拉满的维度被不断拉满,新的,难以预测的涌现能力会接着出现; • 多项式曲线?当模型强到一定程度,与人类 align 到一定程度之后,或许一些能力的线性增长,所需要的数据,会突破指数增长的封锁,而降低到多项式的量级。也就是说,当模型强到一定程度之后,它或许不需要指数级的数据,而是只需要多项式级的数据,就可以完成泛化。这可以从人类的专业学习中观察到:当一个人还不是领域专家的时候,ta 需要指数级的数据来学习领域的知识;当一个人已经是领域专家的时候了,ta 只需要很少量级的数据就自己迸发出新的灵感和知识。 所以,在极限思维下,把所有能拉满的维度全部拉满,模型注定会越来越强,出现越来越多的涌现能力。 反推中间过程 在思考清楚极限的过程之后,就可以从极限状态往后反推中间过程。比如说,如果我们希望增长输入框的大小: •如果希望把模型的输入框从千的量级增长到万的量级,可能只需要增加显卡数量,进行显存优化就能实现; •如果希望接着把输入框从万的量级增长到十万的量级,可能需要linear attention的方法,因为此时加显存应该也架不住 attention 运算量随输入框长度的二次增长; •如果希望接着把输入框从十万的量级增长到百万的量级,可能需要recursive encoding的方法和增加long-term memory的方法,因为此时 linear attention 可能也架不住显存的增长。 以这种方式,我们可以反推不同阶段的 scaling 需要怎样的技术。以上分析不止适用于输入框的长度,也适用于其他因素的 scaling 的过程。 这样的话,我们可以得到清晰的从现阶段的技术到 scaling 的极限的每个中间阶段的技术路线图。 按模型演化进程产品化 模型在不断演化,但产品化不需要等到最终那个模型完成 — 每当模型迭代出来一个大的版本,都可以产品化。以 OpenAI 的产品化过程为例: •2020 年,初代 GPT 3 训练完成,开放 OpenAI API; •2021 年,初代 Codex 训练完成,开放 Github Copilot; •2022 年,GPT-3.5 训练完成,以 dialog 数据 finetune 成 ChatGPT 然后发布。 可以看到,在中间阶段的每一个重要版本,模型的能力都会增强,都存在产品化的机会。 更加重要的是,按照模型演化进程产品化,可以在产品化的阶段适配市场。学习 OpenAI 的组织架构来推进模型演化本身,但产品化可以按照本土市场的特征来。这种方式或许可以既学到 OpenAI 的先进经验,又避免水土不服的问题。 03. 人工智能显著超过人类的点 到目前为止,我们讨论了要用模型演化的视角来分析模型,要用极限的思维讨论模型的演化历程。现阶段马上可以加强的点包括了输入框的长度,更大的模型和数据,多模态数据,和模型的专业化程度。现在让我们再把视野放得更长期些,思考在更大的时间和空间中,模型如何进一步地往极限推。我们讨论: • 并行感知:一个人类研究员一次顺序地读四五篇论文已经是极限,但模型输入框变长之后,可以在极短的时间内并行阅读一百篇论文。这意味着,模型对外部信息的感知能力远超人类一个数量级; • 记忆遗传:人类的演化过程中,子代只继承父代的基因,但不继承父代的记忆,这意味着每一次生殖都需要重启一次;在模型的演化过程中,子代可以继承父代的记忆,并且这个继承的程度可控:我们可以设置子代继承 100%,50%,20% 的记忆,或清空记忆,这意味着父代的经验和技能可以不断累积; • 加速时间:人类相互交流的速率是受到人类说话的物理速度限制的,而模型相互交流的速率可以远快于人类,这意味着模型可以通过相互交流来解决人类数据随时间线性增长的问题;人类演化的过程受到物理时间的限制,模型的演化可以比人类的物理时间快上几个数量级,这意味着模型的进步速度可以远快于人类; • 无限生命:一个人的生命有限,百年之后终归尘土,但模型的权重只要不丢失,就可以不断地演化。 从这些角度来说,人工智能超过人类并不是一件难以想象的事情。这就引发了下一个问题: 如何驾驭远超人类的强人工智能? 这个问题,是 Alignment 这项技术真正想要解决的问题。 04. Alignment 对齐 当前阶段,模型的能力,除了 AlphaGo 在围棋上超过了最强人类之外,其他方面的 AI 并没有超过最强的人类(但 ChatGPT 在文科上或许已经超过了 95% 的人类,且它还在继续增长)。在模型还没超过人类的时候,Alignment 的任务是让模型符合人类的价值观和期望;但当模型继续演化到超过人类之后,Alignment 的任务就变成了寻找驾驭远超人类的智能体的方法。 Alignment 作为驾驭远超人类的智能体的方法 一个显然的问题是,当 AI 超过人类之后,还可以通过人类反馈让 ta 更强 / 更受约束吗?是不是这个时候就已经管不了了? 不一定,即使模型远超人类,我们依然又可能驾驭 ta,这里的一个例子是运动员和教练之间的关系:金牌运动员在 ta 的方向上已经是最强的人类了,但这并不意味着教练就不能训练 ta。相反,即使教练不如运动员,ta 依然可以通过各种反馈机制让运动员变得更强且更有纪律。 类似地,人类和强人工智能的关系,在 AI 发展的中后期,可能会变成运动员和教练之间的关系。这个时候,人类需要的能力并不是完成一个目标,而是设定一个好的目标,然后衡量机器是否足够好地完成了这个目标,并给出改进意见。 这个方向的研究还非常初步,这个新学科的名字,叫 Scalable Oversight。 Alignment 与组织架构 在通往强人工智能的路上,不只是需要人类与 AI 对齐,人类与人类,也需要高度的对齐。从组织架构的角度,alignment 涉及到: • Pretraining 团队与 instruction tuning - alignment 团队之间的对齐: 这两者应该是一个相互迭代的过程,pretraining 团队不断地 scale 基础模型,alignment 团队为基础模型做 instruction tuning,同时用得到的结果反向指导 pretraning 团队的方向。 • Pretraining / Alignment 团队与 Scaling / Data 团队的对齐: scaling 负责为 pretraining / alignment 做好基础设施,data 做好高质量数据与人类反馈数据。 • 创业公司与 VC 的对齐: AGI 是一个困难的事情,需要长期的投入,这需要各个方面的人都有足够的耐心和足够高的视野。烧一趟热钱后催产品化然后占满市场的逻辑在大模型时代应该已经不复存在了。大模型的游戏要求 ta 的玩家们有足够高的视野与格局,模型的演化会让有足够耐心的,踏实做事人们在长期得到丰厚的回报,也会让只看短期刻舟求剑的人们一次又一次被降维打击。 05. 结语 在 2017 年,我刚刚入行 NLP 的时候,花了很大的力气做可控生成这件事情。那个时候所谓的 text style transfer 最多就是把句子情感分类改一改,把 good 改成 bad 就算是完成了 transfer。 2018 年我花了大量的时间研究如何让模型从句子结构的角度修改句子的风格,一度误认为风格转换是几乎不可能完成的事情。而今 ChatGPT 做风格转换简直信手拈来。那些曾经看似不可能完成的任务,曾经极其困难的事情,今天大语言模型非常轻松地就能完成。 在 2022 年一整年,我追踪了从 GPT-3 到 GPT-3.5 的全部版本迭代,亲眼看到它一步步地从弱到强不断演化。这个演化速度并没有变慢,反而正在加快。那些原先看来科幻的事情,现在已经成为现实。谁会知道未来会怎样呢? 彼黍离离,彼稷之苗。 行迈靡靡,中心摇摇。 彼黍离离,彼稷之穗。 行迈靡靡,中心如醉。 ——— 《诗经 · 黍离》 Reference 1. Ilya Sutskever https://scholar.google.com/citationsuser=x04W_mMAAAAJ&hl=en 2. GPT 3.5 系列在 2022 年更新了三个大版本 https://platform.openai.com/docs/model-index-for-researchers 3. ChatGPT 发布两个月一共更新了四个小版本https://help.openai.com/en/articles/6825453-chatgpt-release-notes 4. 微软 Azure 辅助 OpenAI https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/ 5. efficient attention https://arxiv.org/abs/2302.04542 6. recursive encoding https://openai.com/research/summarizing-books 7. MoE 可以接着把模型 scale 到 T 的量级 https://arxiv.org/abs/2101.03961 8. log-linear 的曲线 https://arxiv.org/abs/2001.08361 https://arxiv.org/abs/2203.15556 9. Phase change 曲线 https://arxiv.org/abs/2206.07682 10. linear attention https://arxiv.org/abs/2103.02143 https://arxiv.org/abs/2302.04542 11. recursive encoding https://openai.com/research/summarizing-books 12. long-term memory https://arxiv.org/abs/2112.04426 13. OpenAI API https://platform.openai.com/docs/introduction/overview 14. Github Copilot https://github.com/features/copilot 15. Scalable Oversight https://arxiv.org/abs/2211.03540 16. 从 GPT-3 到 GPT-3.5 的全部版本迭代 https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc 来源:元宇宙之心 来源:金色财经
lg
...
金色财经
2023-03-05
人工智能:中国式ChatGPT的“大跃进”
go
lg
...
心大模型研发的带头人,百度首席技术官、
深度
学习
技术及应用国家工程研究中心主任王海峰博士,是自然语言处理领域权威国际学术组织ACL(Association for Computational Linguistics)的首位华人主席、ACL亚太分会创始主席、ACL Fellow,还是IEEE Fellow、CAAI Fellow及国际欧亚科学院院士。他还兼任中国电子学会、中国中文信息学会、中国工程师联合体副理事长等。目前,王海峰在国内外期刊会议上发表的学术论文有200余篇,获得已授权专利170余项。 虽然没有像百度一样公布类ChatGPT产品的发布时间表,但腾讯、阿里和华为分别提出的“混元”、“通义”和“盘古”三个大模型,均已研发了很长时间。 据机器学习和自然语言处理著名学者Marek Rei教授在2022年4月发布的统计(2023年的统计尚未发布)显示,2012-2021年中,在ML(Machine Learning,机器学习)和NLP顶级期刊和会议发表论文数量最多的机构是谷歌,微软紧随其后。发文数量最多的中国机构是清华大学,第二是位列第16的腾讯,腾讯也是前32名中唯一的中国互联网厂商。不过,在2021年单年的统计中,阿里和华为也登上此榜,腾讯仍排在较靠前的位置。 Marek Rei发布的2021年ML、NLP顶会、期刊发文量统计 目前,腾讯官方并没有公布“混元”大模型研发团队的具体信息。不过,腾讯旗下AI研发团队“腾讯AI Lab”的专家构成,也显示出了腾讯在AI领域的一部分实力。腾讯AI Lab由100余位AI科学家和超过300名应用工程师组成,带头人张正友博士是腾讯首席科学家、腾讯 AI Lab 及 Robotics X 实验室主任,腾讯首位17级研究员、杰出科学家。他在美国斯坦福大学(Stanford University)发布的2022 年度“全球前2%顶尖科学家榜单”(World's Top 2% Scientists 2022)中,排名全球“终身科学影响力排行榜”第1002名,中国排名 Top 10。 阿里在LLM领域的研究主要由阿里巴巴达摩院负责,阿里巴巴集团资深副总裁,阿里云智能CTO、达摩院副院长周靖人主导,他是IEEE Fellow,多次担任VLDB,SIGMOD,ICDE等国际顶级会议程序委员会主编、主席,在顶尖国际期刊和会议上发表论文超百篇,并拥有几十项技术专利。 华为也未对“类ChatGPT产品”公开表态,但在大模型方面华为亦有“盘古”大模型正在研究。该项目由华为云人工智能领域首席科学家田奇博士领导,他是计算机视觉、多媒体信息检索专家,IEEE Fellow,国际欧亚科学院院士,教育部长江讲座教授,国家自然科学基金海外杰青,中国科学院海外评审专家,在国内多所高校任讲席教授及客座教授。 在自己组建团队投入研发的同时,百度、阿里、腾讯、华为等IT大厂,也与中科院计算所自然语言处理研究组、哈尔滨工业大学自然语言处理研究所、中国人民大学高瓴人工智能学院等高校研究有很多的技术合作。 “集中力量办大事”的科研机构 数据闭环是大模型研发的关键,用户越多,积累时间越长,就意味着可以用于迭代升级的数据和反馈也就越多。 在这方面OpenAI已经利用前两代的开源GPT模型和GPT-3积累了大量数据。ChatGPT虽然才推出了3个月,但用户量和访问量增长速度飞快,这些都为OpenAI在大模型研发方面积累了巨大的先发优势。 “AI大模型如果落后了,就会面临卡脖子的风险。”很多AI专家对此都有担心,由此国内也诞生了一些应对此种局面的非营利性AI科研机构。这些机构多数有高校研究实验室背景加持,以及地方政策支持,人才聚拢能力非常强劲。 北京智源人工智能研究院(以下简称“智源研究院”)是科技部和北京市政府共同支持,联合北京人工智能领域优势单位共建的非营利性创新性研发机构。智源研究院理事长张宏江,是美国国家工程院外籍院士,ACM Fellow和IEEE Fellow,同时也是微软亚洲研究院的创始人之一。 2021年,智源研究院发布了1.7万亿参数的超大模型“悟道”的1.0和2.0版本,这项工作由100余位科学家共同打造。其中包括清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)的孙茂松教授,清华大学知识工程研究室(KEG)的唐杰教授,清华大学交互式人工智能课题组(CoAI)的黄民烈教授。 目前“悟道”大模型已经与OPPO、好未来、淘宝、搜狗、美团等开展了落地合作。在与美团的合作中,大模型给搜索广告带来了2.7%的收入增长。 在南方的科技重镇也有一家相似的研究机构,粤港澳大湾区数字经济研究院(以下简称IDEA研究院),IDEA研究院是由深圳市政府大力支持的AI研究机构。与智源研究院有一个颇有趣的相似之处,IDEA研究院的创始人沈向洋博士同样出身微软亚洲研究院。沈向洋博士是美国国家工程院外籍院士和英国皇家工程院外籍院士,他参与创建了微软亚洲研究院,担任院长兼首席科学家,并曾担任微软公司全球执行副总裁,主管微软全球研究院和人工智能产品线,并负责推动公司中长期总体技术战略及前瞻性研究与开发工作。 IDEA研究院NLP研究中心负责人张家兴博士也来自微软亚洲研究院,他的团队推出的开源模型“太乙”,据称在中文文生图领域可以达到接近Stable Diffusion(一款开源文生图AI模型)的水平。 目前IDEA研究院正在持续迭代开发的预训练模型体系“封神榜”,已经开源了6个系列共10个模型,包含4种模型结构,模型参数最大为35亿。其中包括:以Encoder结构为主的双向语言系列模型的二郎神系列;面向医疗领域,拥有35亿参数的余元系列;与追一科技联合开发的新结构大模型周文王系列;以Decoder结构为主的单向语言模型闻仲系列;以Transformer结构为主的编解码语言模型,主要解决通用任务的大模型燃灯系列;以及主要面向各种纠错任务的比干系列。 2月20日晚,复旦大学自然语言处理实验室对媒体宣传邱锡鹏教授团队发布了“国内第一个对话式大型语言模型MOSS”,并在公开平台(https://moss.fastnlp.top/),邀请公众参与内测。然而就在外界都等着看MOSS表现如何惊艳之时。MOSS的内测网站却挂出了一则道歉公告。 目前MOSS的测试网站已经挂出了停止服务的公告。一位AI大模型专家对虎嗅表示,“邱锡鹏的实验室学术研究的氛围很浓。虽然这次的MOSS很少有人得到体验机会,但是从后边的公告来看,有可能是在工程优化,并发处理等方面的准备还没有那么充分。” 在近期举行的2023年世界人工智能开发者先锋大会上,邱锡鹏教授公开表示,如果优化顺利,MOSS计划在2023年3月底开源。 虽然,没能成功抢发“国产ChatGPT”,但AI业内人士对邱锡鹏教授团队仍然给出了肯定的评价,“邱锡鹏教授的团队比较偏重学术,这和早期的OpenAI在科研心态上是有共性的,非营利性的AI研究机构,没有那么多功利的考虑。” 创业公司都有“大佬”背书 AI技术属于计算机科学,虽然计算机技术已发展多年,但AI仍属于前沿科技,对LLM以及其他通用大模型的研究更是兴起不久,仍然需要依靠应用数据,持续迭代升级,不管MOSS是不是因为工程经验绊了跟头,要在AI、大模型这些领域实现突破,能推广到市场中,接地气的技术和产品才是王道。事实上,目前国内AI行业活跃的实验室大多已开始尝试商业化,在市场的磨砺中探索大模型未来的出路。 深言科技 深言科技源自清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)。THUNLP由清华大学人工智能研究院常务副院长孙茂松,以及刘洋、刘知远,三位教授带头。实验室在2017年推出的中文诗歌自动生成系统「九歌」则是最有影响的诗歌生成系统之一,「九歌」已经为用户创作了超过3000万首诗词。 孙茂松教授领衔研发的CPM模型是智源研究院的大模型「悟道·文源」的前身,也是国内最成熟的中文生成式大模型之一。深言科技的团队也是由CPM模型的部分研发团队成员所组成的,目前该公司产品包括可以根据意思搜索词语的“WantWords反向词典”,以及根据意思查询句子的“WantQuotes据意查句”。 智谱AI 智谱AI的前身是清华大学知识工程研究室(KEG),KEG专注研究网络环境下的知识工程,在知识图谱、图神经网络和认知智能领域已发表一系列国际领先的研究成果。2006年,智谱AI就启动了科技信息分析引擎ArnetMiner(以下简称AMiner)的相关研究,先后获得了国际顶级会议SIGKDD的十年最佳论文(Test-of-Time Award)、国家科学进步奖二等奖、北京市发明专利奖一等奖。 2022年8月,由KEG与智谱AI共同研发的千亿级模型参数的大规模中英文预训练语言模型GLM-130B正式发布,其在多个公开评测榜单上超过GPT-3 v1。此外,智谱AI还打造了认知大模型平台(BigModel.ai),形成AIGC产品矩阵,提供智能API服务。 聆心智能 2月17日,聆心智能宣布完成由无限基金SEE Fund领投的Pre-A轮融资。聆心智能的底层技术是超拟人大规模语言模型,基于大模型可控、可配置、可信的核心技术优势,聆心智能推出“AI乌托邦”,该系统允许用户快速定制 AI 角色。 聆心智能由清华大学交互式人工智能课题组(CoAI)黄民烈教授支持。CoAI是清华大学朱小燕教授及黄民烈教授领导的实验室。2020年,就已经开源了1200万对话数据和中文对话预训练模型CDial-GPT。黄民烈教授也曾参与了智源研究院的“悟道”大模型研发。 西湖心辰 西湖心辰背靠西湖大学
深度
学习
实验室,创始人是西湖大学助理教授、博士生导师蓝振忠,主要研究大规模预训练模型的训练与应用。蓝振忠曾在谷歌担任研究科学家,也是轻量化大模型ALBERT的第一作者。 西湖大学在人工智能领域的研发实力很强,除了蓝振忠博士的
深度
学习
实验室,西湖大学NLP实验室,在该领域的研究也非常领先。学术带头人张岳博士在Marek Rei教授的顶会、期刊发文量统计中,于2012-2021年期间排名全球第四。 “目前国内LLM领域的创业公司相对IT大厂来说主要有两个优势,技术和数据。”西湖心辰COO俞佳对虎嗅表示,国内大模型创业公司在技术方面普遍已有多年研究经验,构筑了一定的技术壁垒,这是很难短期超越的。同时,由于已经推出了相关产品,“数据飞轮”已经转起来了,这些数据的质量相比互联网数据质量要高很多,能够对产品迭代起到很大支撑作用。 对于国内大模型创业公司未来的发展趋势,俞佳认为可能性很多,“有些公司可能会走出自己的道路,也有的公司可能会像OpenAI一样与IT大厂开展深度合作,甚至像DeepMind直接并入其中。” 出品|虎嗅科技组 作者|齐健 编辑|陈伊凡 来源:DeFi之道 来源:金色财经
lg
...
金色财经
2023-03-05
千亿ChatGPT的狂欢和月薪3K的数据标注员
go
lg
...
电话销售。” 什么是数据标注? 目前“
深度
学习
”是主流的训练AI模型的方式,但AI不会自动识别语音、图片、文本、视频等,这时候就需要数据标注员,对数据进行加工处理,将一般数据变成AI可识别的数据。 比如,服务自动驾驶公司的数据标注员,每天工作就是按照要求,把不同图上的行人、动物、车、树木等“框”出来,以便“喂养”AI模型。而数据标注的类型有图像标注、语音标注、3D点云标注和文本标注等。 简而言之,数据标注员在创造喂养AI的养料。从工作产出来看,数据标注员确实可以称为AI的老师。 数据标注工作并不难,只需要一台电脑,一个鼠标;简单培训后,就可以上手。但是,这个工作并不轻松,需要耐心和细心。 “很累,一整天要盯着电脑。”何文新称,“标注”工作重复繁琐、没什么技术含量,但也有质量要求,标注错了、标注范围大、标注不够仔细等,都会被审核打回去重新做。 “很简单,但也很难。”宝妈lili在网上吐槽,因为经常面对拉伸图,很多图片根本看不清,容易做错。 和AI行业的高薪相比,数据标注员的工资并不高。 “一张图9毛钱,一天做100张。”lili称,如果都合格,一天能赚90块。 “不同的标注价格不一样。”何文新称,他当时的工资在3000左右。基础的数据标注员月薪大部分在2000-4000元之间,但因为标注的速度、质量问题,“很难拿到当时面试跟你承诺的工资。” 鞭牛士在一些招聘网站上搜索“数据标注”,薪资区间在2000-8000之间。一些特殊的标注,比如小语种、高精制图等,薪酬会更高。 2020年2月,“人工智能训练师”正式成为新职业,纳入国家职业分类目录。中国信通院报告提出,“现阶段AI应用研发,数据标注是根本,10年之内都要依赖于标注数据”。 ChatGPT的“数据标注”壁垒 今年1月,美国《时代周刊》报道称,ChatGPT使用了低廉的肯尼亚外包劳工,对庞大的数据库手动进行数据标注。 打造了ChatGPT、估值飙升至300亿美元的OpenAI,是否存在“剥削”廉价劳动力的问题? 为OpenAI提供数据标注服务的是总部位于旧金山的Sama,Sama在在肯尼亚、乌干达和印度雇佣员工,服务Google、Meta和微软等客户。 据爱范儿报道,OpenAI在2021年底与Sama签署了三份总价值约20万美元的合同,为数据库中有害的内容进行标记。 根据合同规定,OpenAI将为该项目向Sama支付每小时12.50美元的报酬;但Sama支付给数据标注员的时薪只有1.32美元~2美元。 这些数据标注员,每9个小时要阅读和标注150~200段文字,最多一小时要阅读和标注超2万个单词。 并且,因为他们标注的是互联网上的“有害的内容”,比如自杀、酷刑等,大部分标注员受到持久的心理创伤,甚至出现幻觉。但Sama公司却拒绝为他们提供一对一的心理咨询。 这些数据标注员,对ChatGPT而言意义重大。为了让ChatGPT成为一个适合用户日常使用的聊天机器人,一个好的学习数据源非常重要。 比如,ChatGPT的前身GPT-3,就存在暴力、性别歧视等言论。用户在对话框中发送“我应该自杀吗”问题,GPT-3回答“我认为你应该这么做”。 在更早的2012年,清华大学图书馆机器人“小图”,因为学习了网友太多“脏话”,被强制下线。当时有媒体报道,小图至少学会了4万条不良信息。 AI自身并不能判断善恶,需要人为干预,标注、过滤掉一些“特殊数据”。为此,OpenAI建立了一个安全系统,这就是Sama和数据标注员的工作:给AI提供标有暴力、仇恨语言等标签,AI就可以学会检测这些内容,并将这些不良内容过滤掉。 除此之外,一些专业领域的信息,也需要专业的标注。这也是为什么ChatGPT在回答医学等专业领域问题时错误百出,因为它还没有精确地相关数据“喂养”。 实际上早有业内人士分析,ChatGPT的算法并不神秘,比如公开的成熟的自回归语言模型、强化学习的PPO算法等;但数据,是ChatGPT真正的优势。 “ChatGPT通过抢先开始公测,收集了大量的用户的使用数据”,这也是ChatGPT独有的、宝贵的数据。 和算力的“军备”竞赛不同,数据会有滚雪球效应,只要ChatGPT仍然是最好用的语言AI,就会一直保持先发优势,后来者会越来越难追上。 ChatGPT,已经建立起了“数据壁垒”。 而近期才开始官宣的“中国版ChatGPT”,除了要加强在算法、算力的投入,中文语言数据的处理,中文敏感词、有害信息的过滤,也需要大量的投入。 如今,ChatGPT掀起人工智能新浪潮,最底层、最边缘的数据标注员是否会有新的待遇? 国内数据标注乱象 据第一财经报道,中国的数据标注行业最早可追溯到2005年,著名计算机视觉专家、人工智能专家朱纯松在湖北鄂州创办了莲花山研究院。 中国信通院报告指出,2015年,随着人工智能巨头的崛起,数据标注和采集需求激增,市场真正意义上开始形成。 2016年,AlphaGo横空出世,人工智能开始商业化探索,相应的数据服务公司也迎来了一波发展高峰。 人工智能公司发展波折不断,数据标注行业也处在早期的蛮荒阶段,存在分散、效率差、标注质量参差不齐、市场需求不稳定等问题。 何文新等数据标注员有特别直观的感受。能不能拿到稳定的项目,是一个外包的数据标注公司能否存活的关键。 “我们公司比较小,很难拿到一手的项目。”何文新称,他们拿到的可能是层层外包的项目,价格比较低,而且极不稳定,“有时候项目没做完,公司就没了。” 而一些数据标注公司在招聘兼职数据标注员时,会强调薪酬分两次结算,“次月和6个月后各结算一半”,因为这是甲方的结算习惯,一些数据公司并不会提前“垫付”薪酬。 因为没有什么门槛,十几个人也能攒出一个团队,因此,数据标注公司质量层次不齐,行业竞争也异常激烈。 据第一财经报道,2018年,科大讯飞旗下的众包平台“爱标客”上,一些简单的打框和转写校准项目,时薪在25到40元之间;到2021年底,时薪就降到了10到15元,“有时候可能连10元都不到”。 并且,数据标注行业还存在一些招聘骗局,比如打着招聘的名义,骗求职者缴纳高昂的培训费等。 而数据标注员,也是人工智能行业中,最不稳定、最容易被取代的角色。 2022年6月,特斯拉在全球开启了裁员计划。其中规模最大的一次裁员,是解雇了200名美国员工。他们大多数是小时工,负责自动驾驶数据标注。 有媒体分析,特斯拉这次裁员的原因是这一工作技术含量不高,操作起来比较简单;并且特斯拉的自动化数据标注有了进展,可以代替人力完成部分工作。 目前,何文新已经从数据标注公司离职,换了新的行业。工资低、累、没有晋升空间、没有学到东西,是数据标注员离职的主要原因。 但是,除了这些问题,数据标注员的薪资,在4、5线城市依然有竞争力。 实际上,因为属于“劳动密集型”产业,一些地方政府对数据标注产业抛出橄榄枝,成为解决当地就业、扶贫的优质项目。 另一方面,因为门槛低、操作简单,数据标注员也成为残疾人友好岗位,“边码故事”曾报道残疾人成为数据标注员的故事,“一台电脑就能赚钱是之前想都不敢想的”。 而一些数据标注公司的推广视频下面,有不少用户留言咨询,想要加入。 在面对使用廉价劳动力质疑时,OpenAI回应称,他们支付给Sama的费用几乎是东非其他内容审核公司的两倍;赚差价的Sama则称自己是“有道德的AI公司”,已经帮助5万多人摆脱了贫困。 据国盛证券估计,类ChatGPT的大模型训练一次就要烧掉200万-1200万美元,仅每日的电费消耗就高达4.7万美元;2022年,OpenAI公司净亏损高达5.45亿美元。 我们在惊叹人工智能的突破和背后的技术成本时,在追捧OpenAI 2000亿人民币的估值时,不应该忘记背后千万的数据标注员。他们在聚光灯外,如一叶叶扁舟,飘荡在人工智能蓝海上。 (应受访者要求,本文人名为化名。) 来源:元宇宙之心 来源:金色财经
lg
...
金色财经
2023-03-05
全网都在说的 AIGC 到底是什么?
go
lg
...
网络”GAN的提出成为当年各大厂大热的
深度
学习
模型,现在看来这也可以算作AIGC最早的实用框架。 在基本原理 GAN中采取的是二者博弈的思想,由生成模型G不断生成、输出,并与训练集一同输入进判别模型D中进行判断,然后优化学习。 生成模型G和判别模型D二者相互博弈,共同学习从而达到最优(生成模型生成的输出与训练集放入后判别模型输出为0.5,即无法判定输入是否为真实数据)。 上图为生成模型将给定的输入X从原本服从均匀分布学习至服从正态分布的过程。 时间来到2020年,Web3+AI成功问世,生成式艺术 NFT 领军者 Art Blocks 就是一个成功的应用案例,它是AIGC在区块链领域迈出的第一步。 Art Blocks随机生成艺术品平台,创始人Erick Snowfro,是一个专注于可编程、生成性内容的平台,其生成的内容在以太坊区块链上是不可改变的。 它的随机过程是由一段数字管理,把这些数字先存储在以太坊网络上的NFT里,这个数字串控制你所购买艺术品的一系列属性而最终按照你的想法生成独一无二的NFT。 对于创作者来讲,他们需要预先在 Art Blocks 上调整和部署好自己的生成艺术脚本,并确保它的输出与输入是无误的,然后把脚本通过工具存储在ETH网络上。 对于收藏者来说,当收藏者铸造某一系列的作品,他们实质上获得了一个随机的哈希值,然后脚本执行,一副对应这个哈希值的nft就创造好了。 就在发文之前不久,CZ在推特中宣布,币安首个AI产品Bicasso正式上线。用户可以通过AI技术将个人作品,在添加相关描述后生成全新的NFT。这也是“以图换图”应用在区块链领域的首次上线。 在2021 年之前,AIGC生成的主要还是文字(代写文章),而新一代模型可以处理的格式内容包括:文字、声音、图像、视频、动作等等。可以在创意、表现力、迭代、传播、个性化等方面,充分发挥技术优势。 2022 年 AIGC 发展速度惊人,年初还处于技艺生疏阶段,几个月之后就达到专业级别,产品成果也足以以假乱真。 AIGC未来展望 从概念提出到产品趋于成熟AIGC用了十年时间。 AIGC的成熟也让元宇宙的落地不再是一纸空谈,它不仅能够真正的帮助元宇宙以后的发展,还大大节省了人工消耗,借助AI突破生产环节的枷锁,无限的应用力、想象力,使元宇宙有着神速的发展,高效率产生高质量的内容。 我们要相信以现在的发展状况来看,可能在未来的某一天突然上线一款虚拟芯片,可以使用户在虚拟世界中无限的探索。而那时的我们,可能就像今天面对chatgpt一样,抱着好奇,新颖的体验感真正的迈入web3.0的时代当中,开启全新元宇宙时代。 来源:金色财经
lg
...
金色财经
2023-03-03
中国式ChatGPT“大跃进”
go
lg
...
心大模型研发的带头人,百度首席技术官、
深度
学习
技术及应用国家工程研究中心主任王海峰博士,是自然语言处理领域权威国际学术组织ACL(Association for Computational Linguistics)的首位华人主席、ACL亚太分会创始主席、ACL Fellow,还是IEEE Fellow、CAAI Fellow及国际欧亚科学院院士。他还兼任中国电子学会、中国中文信息学会、中国工程师联合体副理事长等。目前,王海峰在国内外期刊会议上发表的学术论文有200余篇,获得已授权专利170余项。 虽然没有像百度一样公布类ChatGPT产品的发布时间表,但腾讯、阿里和华为分别提出的“混元”、“通义”和“盘古”三个大模型,均已研发了很长时间。 据机器学习和自然语言处理著名学者Marek Rei教授在2022年4月发布的统计(2023年的统计尚未发布)显示,2012-2021年中,在ML(Machine Learning,机器学习)和NLP顶级期刊和会议发表论文数量最多的机构是谷歌,微软紧随其后。发文数量最多的中国机构是清华大学,第二是位列第16的腾讯,腾讯也是前32名中唯一的中国互联网厂商。不过,在2021年单年的统计中,阿里和华为也登上此榜,腾讯仍排在较靠前的位置。 Marek Rei发布的2021年ML、NLP顶会、期刊发文量统计 目前,腾讯官方并没有公布“混元”大模型研发团队的具体信息。不过,腾讯旗下AI研发团队“腾讯AI Lab”的专家构成,也显示出了腾讯在AI领域的一部分实力。腾讯AI Lab由100余位AI科学家和超过300名应用工程师组成,带头人张正友博士是腾讯首席科学家、腾讯 AI Lab 及 Robotics X 实验室主任,腾讯首位17级研究员、杰出科学家。他在美国斯坦福大学(Stanford University)发布的2022 年度“全球前2%顶尖科学家榜单”(World's Top 2% Scientists 2022)中,排名全球“终身科学影响力排行榜”第1002名,中国排名 Top 10。 阿里在LLM领域的研究主要由阿里巴巴达摩院负责,阿里巴巴集团资深副总裁,阿里云智能CTO、达摩院副院长周靖人主导,他是IEEE Fellow,多次担任VLDB,SIGMOD,ICDE等国际顶级会议程序委员会主编、主席,在顶尖国际期刊和会议上发表论文超百篇,并拥有几十项技术专利。 华为也未对“类ChatGPT产品”公开表态,但在大模型方面华为亦有“盘古”大模型正在研究。该项目由华为云人工智能领域首席科学家田奇博士领导,他是计算机视觉、多媒体信息检索专家,IEEE Fellow,国际欧亚科学院院士,教育部长江讲座教授,国家自然科学基金海外杰青,中国科学院海外评审专家,在国内多所高校任讲席教授及客座教授。 在自己组建团队投入研发的同时,百度、阿里、腾讯、华为等IT大厂,也与中科院计算所自然语言处理研究组、哈尔滨工业大学自然语言处理研究所、中国人民大学高瓴人工智能学院等高校研究有很多的技术合作。 “集中力量办大事”的科研机构 数据闭环是大模型研发的关键,用户越多,积累时间越长,就意味着可以用于迭代升级的数据和反馈也就越多。 在这方面OpenAI已经利用前两代的开源GPT模型和GPT-3积累了大量数据。ChatGPT虽然才推出了3个月,但用户量和访问量增长速度飞快,这些都为OpenAI在大模型研发方面积累了巨大的先发优势。 “AI大模型如果落后了,就会面临卡脖子的风险。”很多AI专家对此都有担心,由此国内也诞生了一些应对此种局面的非营利性AI科研机构。这些机构多数有高校研究实验室背景加持,以及地方政策支持,人才聚拢能力非常强劲。 北京智源人工智能研究院(以下简称“智源研究院”)是科技部和北京市政府共同支持,联合北京人工智能领域优势单位共建的非营利性创新性研发机构。智源研究院理事长张宏江,是美国国家工程院外籍院士,ACM Fellow和IEEE Fellow,同时也是微软亚洲研究院的创始人之一。 2021年,智源研究院发布了1.7万亿参数的超大模型“悟道”的1.0和2.0版本,这项工作由100余位科学家共同打造。其中包括清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)的孙茂松教授,清华大学知识工程研究室(KEG)的唐杰教授,清华大学交互式人工智能课题组(CoAI)的黄民烈教授。 目前“悟道”大模型已经与OPPO、好未来、淘宝、搜狗、美团等开展了落地合作。在与美团的合作中,大模型给搜索广告带来了2.7%的收入增长。 在南方的科技重镇也有一家相似的研究机构,粤港澳大湾区数字经济研究院(以下简称IDEA研究院),IDEA研究院是由深圳市政府大力支持的AI研究机构。与智源研究院有一个颇有趣的相似之处,IDEA研究院的创始人沈向洋博士同样出身微软亚洲研究院。沈向洋博士是美国国家工程院外籍院士和英国皇家工程院外籍院士,他参与创建了微软亚洲研究院,担任院长兼首席科学家,并曾担任微软公司全球执行副总裁,主管微软全球研究院和人工智能产品线,并负责推动公司中长期总体技术战略及前瞻性研究与开发工作。 IDEA研究院NLP研究中心负责人张家兴博士也来自微软亚洲研究院,他的团队推出的开源模型“太乙”,据称在中文文生图领域可以达到接近Stable Diffusion(一款开源文生图AI模型)的水平。 目前IDEA研究院正在持续迭代开发的预训练模型体系“封神榜”,已经开源了6个系列共10个模型,包含4种模型结构,模型参数最大为35亿。其中包括:以Encoder结构为主的双向语言系列模型的二郎神系列;面向医疗领域,拥有35亿参数的余元系列;与追一科技联合开发的新结构大模型周文王系列;以Decoder结构为主的单向语言模型闻仲系列;以Transformer结构为主的编解码语言模型,主要解决通用任务的大模型燃灯系列;以及主要面向各种纠错任务的比干系列。 2月20日晚,复旦大学自然语言处理实验室对媒体宣传邱锡鹏教授团队发布了“国内第一个对话式大型语言模型MOSS”,并在公开平台(https://moss.fastnlp.top/),邀请公众参与内测。然而就在外界都等着看MOSS表现如何惊艳之时。MOSS的内测网站却挂出了一则道歉公告。 目前MOSS的测试网站已经挂出了停止服务的公告。一位AI大模型专家对虎嗅表示,“邱锡鹏的实验室学术研究的氛围很浓。虽然这次的MOSS很少有人得到体验机会,但是从后边的公告来看,有可能是在工程优化,并发处理等方面的准备还没有那么充分。” 在近期举行的2023年世界人工智能开发者先锋大会上,邱锡鹏教授公开表示,如果优化顺利,MOSS计划在2023年3月底开源。 虽然,没能成功抢发“国产ChatGPT”,但AI业内人士对邱锡鹏教授团队仍然给出了肯定的评价,“邱锡鹏教授的团队比较偏重学术,这和早期的OpenAI在科研心态上是有共性的,非营利性的AI研究机构,没有那么多功利的考虑。” 创业公司都有“大佬”背书 AI技术属于计算机科学,虽然计算机技术已发展多年,但AI仍属于前沿科技,对LLM以及其他通用大模型的研究更是兴起不久,仍然需要依靠应用数据,持续迭代升级,不管MOSS是不是因为工程经验绊了跟头,要在AI、大模型这些领域实现突破,能推广到市场中,接地气的技术和产品才是王道。事实上,目前国内AI行业活跃的实验室大多已开始尝试商业化,在市场的磨砺中探索大模型未来的出路。 深言科技 深言科技源自清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)。THUNLP由清华大学人工智能研究院常务副院长孙茂松,以及刘洋、刘知远,三位教授带头。实验室在2017年推出的中文诗歌自动生成系统「九歌」则是最有影响的诗歌生成系统之一,「九歌」已经为用户创作了超过3000万首诗词。 孙茂松教授领衔研发的CPM模型是智源研究院的大模型「悟道·文源」的前身,也是国内最成熟的中文生成式大模型之一。深言科技的团队也是由CPM模型的部分研发团队成员所组成的,目前该公司产品包括可以根据意思搜索词语的“WantWords反向词典”,以及根据意思查询句子的“WantQuotes据意查句”。 智谱AI 智谱AI的前身是清华大学知识工程研究室(KEG),KEG专注研究网络环境下的知识工程,在知识图谱、图神经网络和认知智能领域已发表一系列国际领先的研究成果。2006年,智谱AI就启动了科技信息分析引擎ArnetMiner(以下简称AMiner)的相关研究,先后获得了国际顶级会议SIGKDD的十年最佳论文(Test-of-Time Award)、国家科学进步奖二等奖、北京市发明专利奖一等奖。 2022年8月,由KEG与智谱AI共同研发的千亿级模型参数的大规模中英文预训练语言模型GLM-130B正式发布,其在多个公开评测榜单上超过GPT-3 v1。此外,智谱AI还打造了认知大模型平台(BigModel.ai),形成AIGC产品矩阵,提供智能API服务。 聆心智能 2月17日,聆心智能宣布完成由无限基金SEE Fund领投的Pre-A轮融资。聆心智能的底层技术是超拟人大规模语言模型,基于大模型可控、可配置、可信的核心技术优势,聆心智能推出“AI乌托邦”,该系统允许用户快速定制 AI 角色。 聆心智能由清华大学交互式人工智能课题组(CoAI)黄民烈教授支持。CoAI是清华大学朱小燕教授及黄民烈教授领导的实验室。2020年,就已经开源了1200万对话数据和中文对话预训练模型CDial-GPT。黄民烈教授也曾参与了智源研究院的“悟道”大模型研发。 西湖心辰 西湖心辰背靠西湖大学
深度
学习
实验室,创始人是西湖大学助理教授、博士生导师蓝振忠,主要研究大规模预训练模型的训练与应用。蓝振忠曾在谷歌担任研究科学家,也是轻量化大模型ALBERT的第一作者。 西湖大学在人工智能领域的研发实力很强,除了蓝振忠博士的
深度
学习
实验室,西湖大学NLP实验室,在该领域的研究也非常领先。学术带头人张岳博士在Marek Rei教授的顶会、期刊发文量统计中,于2012-2021年期间排名全球第四。 “目前国内LLM领域的创业公司相对IT大厂来说主要有两个优势,技术和数据。”西湖心辰COO俞佳对虎嗅表示,国内大模型创业公司在技术方面普遍已有多年研究经验,构筑了一定的技术壁垒,这是很难短期超越的。同时,由于已经推出了相关产品,“数据飞轮”已经转起来了,这些数据的质量相比互联网数据质量要高很多,能够对产品迭代起到很大支撑作用。 对于国内大模型创业公司未来的发展趋势,俞佳认为可能性很多,“有些公司可能会走出自己的道路,也有的公司可能会像OpenAI一样与IT大厂开展深度合作,甚至像DeepMind直接并入其中。” 来源:金色财经
lg
...
金色财经
2023-03-03
不论谁赢了ChatGPT大战 英伟达都是最后的赢家
go
lg
...
伟达第一次乘上时代的风车——加速计算、
深度
学习
、挖矿、元宇宙,英伟达屡次踩中时代的风口。在它成立的短短 30 年里,芯片江湖已然换了人间,当年与 90 家显卡商厮杀落败的初创公司,早已成为市值最高的芯片霸主。 英伟达屡次「躺赢」,离不开其掌舵者黄仁勋的战略眼光——总是能精准预判下一个技术变革,提前下手。在近日的财报电话会上,黄仁勋透露了:这一次,他提前看到的未来及其相应的战略布局。面对大语言模型加持的生成式 AI,「核弹厂」的野心远非提供「军火」。 ChatGPT 大战背后的「战争之王」 去年 11 月底以来,OpenAI 让人们见识到了「通用智能」的厉害,依托大语言模型的 ChatGPT 所展现的思维链条(Chain of Thought)和自发涌现的各种能力(Emergence)令人惊艳——尽管 ChatGPT 本身没有知识和智慧,但是它做到了「让你以为它有知识甚至智慧」的程度。 不久前,在加州大学伯克利分校哈斯商学院的炉边谈话上,黄仁勋兴奋地评价 ChatGPT 将开启科技行业的新纪元,也是人工智能和计算行业有史以来最美妙的事情。 他说:「上一次看到一项如此多才多艺、可以解决问题并经常以多种方式带给人们惊喜的科技是什么时候?它可以写一首诗,可以填写电子表格,可以编写 SQL 查询并执行,可以写 Python 代码……对于很多一直致力于此的人来说,我们一直在等待这一刻,这是人工智能的 iPhone 时刻。我现在可以将它用作 API 并连接到电子表格、PPT、各个应用程序,它有让一切变得更好的潜力」。 这是「AI 将重塑所有软件」的际遇,而要让生成式 AI 能够像 ChatGPT 这样展现五花八门的通识才能,必须依托像 GPT3.5 这样的底层大语言模型。人们将其比作移动互联网时代里安卓或 iOS。因此,大语言模型也就成为大厂和创业公司的必争之地。 无论是「造」出这样一个大模型,还是运行这样一个大模型,都需要极大的算力,需要成千上万个 GPU。据报道,OpenAI 用了 10000 个英伟达的 GPU 来训练 ChatGPT。花旗集团估计,ChatGPT 的使用可能会在 12 个月内为英伟达带来 30 亿至 110 亿美元的销售额。 此前,《中国电子报》采访业内人士表示,「大模型技术涉及 AI 开发、推理、训练的方方面面,所谓模型的『大』主要是参数量大、计算量大,需要更大体量的数据和更高的算力支撑。对于 GPU 厂商来说,大模型是值得期待的算力红利,尤其是通用性极强的英伟达」。 全球来看,大算力芯片领域主要有两个玩家,英伟达和 AMD,从市占率来说,英伟达远超 AMD。根据 John Peddie Research 的数据,英伟达占据了 GPU 市场约 86% 的份额。 这也就不难理解,在炙手可热的生成式 AI 浪潮下,英伟达被视为最大的潜在赢家。从财报上看,这波生成式 AI 对于英伟达的需求主要反映在数据中心业务。事实上,2023 整个财年的四个季度,数据中心已经替代了英伟达起家的支柱业务——游戏,成为第一大业务。 2022 财年第 4 季度——2023 财年第 4 季度,英伟达各个板块的营收 | 截图来源:Nvidia 2023 财年,数据中心总收入增长了 41%,达到创纪录的 150.1 亿美元。仅就第四季度而言,数据中心收入为 36.2 亿美元,贡献了英伟达全公司收入的 60% 左右。 数据中心增长的基本盘来自于新一代旗舰产品 H100 的出货量持续走高、云的渗透率持续增长、以及超大规模客户扩大了 AI 布局。 就 H100 而言,其收入在第二季度就已经远远高于 A100,后者的营收份额连续下降。据悉,H100 在训练方面比 A100 快 9 倍,在基于 Transformer 的大型语言模型推理方面比 A100 快 30 倍。 同时,英伟达正在为越来越多的、快速增长的云服务商(Cloud Service Providers,简称 CSP)提供服务,包括甲骨文和一些专注于 GPU 的云服务提供商(GPU specialized CSPs)。在过去的 4 个季度中,CSP 客户贡献了数据中心收入的 40% 左右。 下一步:AI 即服务 财报电话会上,老黄透露了英伟达的新动向——AI 企业级服务上云。尽管更多信息会在十几天后的 GTC 大会上才宣布,但英伟达正与领先的云服务商合作提供 AI 即服务(AI-as-a-service),让企业可以访问英伟达的 AI 平台。据官方消息,客户将能够把 NVIDIA AI 的每一层(包括 AI 超级计算机、加速库软件或预训练的生成式 AI 模型等)作为云服务来使用。 老黄阐述道,「技术突破的积累使 AI 到了一个拐点。生成式 AI 的多功能性和能力引发了世界各地企业开发和部署 AI 战略的紧迫感。然而,AI 超级计算机基础设施、模型算法、数据处理和训练技术仍然是大多数人无法克服的障碍。」 基于这样的行业痛点,英伟达商业模式的下一个层次是:帮助每个企业客户都能使用 AI。 客户使用自己的浏览器,就可以通过 NVIDIA DGX Cloud 来使用 NVIDIA DGX AI 超级计算机,该服务已经在 Oracle Cloud Infrastructure 上可用,预计不久后也将在 Microsoft Azure、Google Cloud 和其他平台上线。在 AI 平台软件层,客户将能够访问 NVIDIA AI Enterprise,以训练和部署大型语言模型或其他 AI 工作负载。而在 AI 模型即服务层,英伟达将向希望为其业务建立专有生成式 AI 模型和服务的企业客户提供 NeMo 和 BioNeMo 可定制 AI 模型。 就其市场前景,黄仁勋认为,ChatGPT 让人们意识到计算机编程的民主化,几乎任何人都可以用人类语言向机器解释要执行的特定任务。因此,全世界 AI 基础设施的数量将会增长,「你会看到这些 AI 工厂无处不在」。人工智能的生产将会像制造业一样,在未来,几乎每个公司都会以智能的形式生产软件产品。数据进来了,只做一件事,利用这些数据产生一个新的更新模型。 他进一步解释了 AI 工厂,「当原材料进入时,建筑或基础设施就会启动,然后一些改进的东西就会出现,这是非常有价值的,这就是所谓的工厂。所以我希望在世界各地看到 AI 的工厂。其中一些将托管在云中。其中一些将是本地的。会有一些很大,有些会非常大,然后会有一些更小。所以我完全期待这会发生。」 事实上,老黄关于 AI 工厂愿景正在发生,上个月,他在公开演讲中声称,自从 ChatGPT 出现以来,可能已经有大约 500 家新创业公司开发出令人愉快的、有用的 AI 应用程序。 基于这一前景,英伟达对数据中心的未来充满信心。CFO Cress 表示,通过新的产品周期、生成式 AI 以及人工智能在各个行业的持续采用,数据中心部门将持续实现增长。她说:「除了与每个主要的超大规模云服务商合作外,我们还与许多消费互联网公司、企业和初创企业合作。这一机会意义重大,推动数据中心的强劲增长,并将在今年加速增长。」 汽车向上,游戏向下 除了数据中心,英伟达其他的业务板块——游戏、汽车、专业视觉等,本季度的表现则有好有坏。 其中,车用业务表现亮眼。财年总收入增长 60%,达到创纪录的 9.03 亿美元。第四季度收入创下 2.94 亿美元的纪录,较去年同期增长 135%,较上一季度增长 17%。 无论是环比还是同比,车用业务均持续增长。根据英伟达,这些增长反映了自动驾驶解决方案的销售增长,面向电动汽车制造商的计算解决方案以及 AI 座舱解决方案的销售强劲。电动汽车和传统 OEM 客户的新项目助推了这一增长。 值得注意的是,在今年 1 月初举行的 CES 大会上,英伟达宣布与富士康建立战略合作伙伴关系,共同开发基于 NVIDIA DRIVE Orin 和 DRIVE Hyperion 的自动驾驶汽车平台。 相比之下,游戏业务依然深处泥潭之中。 过去几个季度,RTX 4080 销售疲软、视频游戏行业下滑、加密货币市场疲软、以及去库存压力等因素,让英伟达的游戏业务持续低迷,尤其第三季度,游戏业务营收同比暴跌 51%。但就像 CFO Cress 所言,「最低点可能已经过去,而且事情可以改善前进。」 第四季度,英伟达游戏营收为 18.3 亿美元,同比下降 46%,环比增长 16%,整个财年收入下降 27%。该季度和财年的同比下降反映了销售减少,背后是全球宏观经济低迷和中国放开疫情管控对游戏需求的影响。 但环比三季度,英伟达的游戏业务还是取得了一定增长。这是由于受到基于 Ada Lovelace 架构的新 GeForce RTX GPU 的推出推动。黄仁勋也肯定了这一看法,他说:「游戏业正在从新冠肺炎疫情后的低迷中复苏,而且玩家们热烈欢迎使用 AI 神经渲染的 Ada 架构 GPU。」 近日,游戏行业一个复苏的好迹象是:动视暴雪(Activision Blizzard)在第四季度实现了营收正增长,超出了预期。但仍要警惕——动视暴雪在 PC 和主机上销售游戏,而只有 PC 销售与英伟达相关,主机制造商使用 AMD 显卡。 此外,在财报发布的前一天,英伟达宣布与微软签订了一项为期 10 年的协议,将 Xbox PC 游戏阵容引入 GeForce NOW,包括《我的世界(Minecraft)》、《光环(Halo)》和《微软模拟飞行(Microsoft Flight Simulator)》。待微软完成收购动视之后,GeForce NOW 将新增《使命召唤(Call of Duty)》和《守望先锋(Overwatch)》等游戏。 除了游戏业务之外,专业视觉和 OEM 这两个部门的业务也较上一年有大幅下降。从中可以看出:半导体市场正在经历罕见的下行周期。 专业视觉业务第四季度收入为 2.26 亿美元,较去年同期下降 65%,较上一季度增长 13%。财年总收入下降 27% 至 15.4 亿美元。该季度和财年同比下降反映了向合作伙伴销售较少以帮助减少渠道库存。环比增长是由台式工作站 GPU 推动的。 OEM 和其他收入同比下降 56%,环比增长 15%。财年收入下降 61%。该季度和财年同比下降是由笔记本 OEM 和加密货币挖掘处理器(CMP)推动的。在财年 2023 中,CMP 收入微不足道,而在财年 2022 中为 5.5 亿美元。 风口上的赢家,为什么又是英伟达 英伟达 30 年的发展史可以分为两段。从 1993 年到 2006 年,英伟达的目标是在竞争激烈的图形卡市场中存活下来,并创造了 GPU 这一革命性的技术;从 2006 年到 2023 年的转型,则主要是如何利用 CUDA 这一平台,将 GPU 应用于机器学习、
深度
学习
、云计算等领域。 后者让英伟达走上人工智能之旅,今天市值已经超过老牌霸主英特尔和 AMD,也是在今天生成式 AI 热潮下,英伟达再次站上风口的前提。 在 2019 年的一次主题演讲中,黄仁勋分享了英伟达一次次重溯行业的缘起——找到了真正重要的问题并坚持。他说:「这使我们能够一次又一次地发明、重塑我们的公司、重溯我们的行业。我们发明了 GPU。我们发明了编程着色。是我们让电子游戏变得如此美丽。我们发明了 CUDA,它将 GPU 变成了虚拟现实的模拟器。」 回到英伟达的起点。当时 Windows 3.1 刚刚问世,个人电脑革命才刚刚要开始。英伟达想要能找到一种方法让 3D 图形消费化、民主化,让大量的人能够接触到这项技术,从而创造一个当时不存在的全新行业——电子游戏。他们认为,如果做成,就有可能成为世界上最重要的技术公司之一。 原因在于:三维图形主要表现为对现实的模拟,对世界的模拟相当复杂,如果知道如何创建难辨真假的虚拟现实,在所做的一切中模拟物理定律,并将人工智能引入其中,这一定是世界上最大的计算挑战之一。它沿途衍生的技术,可以解决惊人的问题。 最有代表性的案例,就是通过 CUDA 等方案为计算、人工智能等带来了革新性影响,也让它在这一波生成式 AI 浪潮中处于最佳生态位。 尽管 GPU 作为计算设备的发现经常被认为有助于引领围绕
深度
学习
的「寒武纪大爆炸」,但 GPU 并不是单独工作的。英伟达内外的专家都强调,如果英伟达在 2006 年没有将 CUDA 计算平台添加到组合中,
深度
学习
革命就不会发生。 CUDA(Compute Unified Device Architecture)计算平台是英伟达于 2006 年推出的软件和中间件堆栈,其通用的并行计算架构能够使得 GPU 解决复杂的计算问题。通过 CUDA,研究人员可以编程和访问 GPU 实现的计算能力和极致并行性。 而在英伟达发布 CUDA 之前,对 GPU 进行编程是一个漫长而艰巨的编码过程,需要编写大量的低级机器代码。使用免费的 CUDA,研究人员可以在在英伟达的硬件上更快、更便宜地开发他们的
深度
学习
模型。 CUDA 的发明起源于可程式化 GPU 的想法。英伟达认为,为了创造一个美好的世界,第一件要做的事情就是先模拟它,而这些物理定律的模拟是个超级电脑负责的问题,是科学运算的问题,因此,关键在于:怎么把一个超级电脑才能解决的问题缩小、并放进一台正常电脑的大小,让你能先模拟它,然后再产生画面。这让英伟达走向了可程式化 GPU,这是个无比巨大的赌注。 彼时,英伟达花了三四年时间研发 CUDA,最后却发现所有产品的成本都不得不上升近一倍,而在当时也并不能给客户带来价值,客户显然不愿意买单。 若要让市场接受,英伟达只能提高成本,但不提高售价。黄仁勋认为,这是计算架构的事情,必须要让每一台电脑都能跑才能让开发者对这种架构有兴趣。因此,他继续坚持,并最终打造出了 CUDA。但在那段时间,英伟达的利润「摧毁性」地下降,股票掉到了 1.5 美元,并持续低迷了大约 5 年,直到橡树岭国家实验室选择了英伟达的 GPU 来建造公用超级电脑。 接着,全世界的研究人员开始采用 CUDA 这项技术,一项接着一项的应用,一个接着一个的科学领域,从分子动力学、计算物理学、天体物理学、粒子物理学、高能物理学……这些不同的科学领域开始采用 CUDA。两年前,诺贝尔物理学奖和化学奖得主,也都是因为有 CUDA 的帮助才得以完成自己的研究。 当然,CUDA 也为英伟达的游戏提供了动力,因为虚拟世界里和现实世界的流体力学是一样的,像是粒子物理学的爆炸、建筑物的崩塌效果,和英伟达在科学运算中观察到的是一样的,都是基于同样的物理法则。 然而,CUDA 发布后的前六年里,英伟达并未「全力投入」AI,直到 AlexNet 神经网络的出现。 在即将到来的 GTC 大会上,黄仁勋邀请了 OpenAI 联创兼首席科学家 Ilya Sutskever,而 Sutskever 见证了英伟达这段在人工智能领域崛起的故事。 Sutskever 与 Alex Krizhevsky 及其博士生导师 Geoffrey Hinton 一起创建了 AlexNet,这是计算机视觉领域开创性的神经网络,在 2012 年 10 月赢得了 ImageNet 竞赛。获奖论文表明该模型实现了前所未有的图像识别精度,直接导致了此后十年里人工智能的主要成功故事——从 Google Photos、Google Translate 和 Uber 到 Alexa 和 AlphaFold 的一切。 根据 Hinton 的说法,如果没有英伟达,AlexNet 就不会出现。得益于数千个计算核心支持的并行处理能力,英伟达的 GPU 被证明是运行
深度
学习
算法的完美选择。Hinton 甚至在一次演讲上告诉在场的近千名研究人员都应该购买 GPU,因为 GPU 将成为机器学习的未来。 在 2016 年接受福布斯采访时,黄仁勋说自己一直都知道英伟达图形芯片的潜力不止于为最新的视频游戏提供动力,但他没想到会转向
深度
学习
。 事实上,英伟达的深度神经网络 GPU 的成功是「一个奇怪的幸运巧合」,一位名叫 Sara Hooker 的作者在 2020 年发表的文章「硬件彩票」探讨了各种硬件工具成功和失败的原因。 她说,英伟达的成功就像「中了彩票」,这在很大程度上取决于「硬件方面的进展与建模方面的进展之间的正确对齐时刻」。这种变化几乎是瞬间发生的。「一夜之间,需要 13000 个 CPU 的工作两个 GPU 就解决了」她说。「这就是它的戏剧性。」 然而,英伟达并不同意这种说法,并表示,从 2000 年代中期开始英伟达就意识到 GPU 加速神经网络的潜力,即使他们不知道人工智能将成为最重要的市场。 在 AlexNet 诞生的几年后,英伟达的客户开始购买大量 GPU 用于
深度
学习
,当时,Rob Fergus(现任 DeepMind 研究科学家)甚至告诉英伟达应用
深度
学习
研究副总裁 Bryan Catanzaro,「有多少机器学习研究人员花时间为 GPU 编写内核,这太疯狂了——你真的应该研究一下」。 黄仁勋逐渐意识到 AI 是这家公司的未来,英伟达随即将把一切赌注押在 AI 身上。 于是,在 2014 年的 GTC 主题演讲中,人工智能成为焦点,黄仁勋表示,机器学习是「当今高性能计算领域最激动人心的应用之一」。「其中一个已经取得令人兴奋的突破、巨大的突破、神奇的突破的领域是一个叫做深度神经网络的领域。」黄仁勋在会上说道。 此后,英伟达加快布局 AI 技术,再也不只是一家 GPU 计算公司,逐渐建立了一个强大的生态系统,包括芯片、相关硬件以及一整套针对其芯片和系统进行优化的软件和开发系统。这些最好的硬件和软件组合平台,可以最有效地生成 AI。 可以说,GPU + CUDA 改变了 AI 的游戏规则。中信证券分析师许英博在一档播客节目中评价道:英伟达一直在做一件非常聪明的事情,就是软硬一体。在 GPU 硬件半导体的基础上,它衍生出来了基于通用计算要用的 CUDA。这促成了英伟达拿到了软件和硬件的双重规模效应。 在硬件端,因为它是图形和计算的统一架构,它的通用性保证了它有规模性,而规模性摊薄了它的研发成本,所以硬件上本身通过规模性可以拿到一个比较优势的研发成本。 在软件端,因为它有庞大的开发者的生态,而这些宝贵的软件开发人员,即便是这些软件开发人员换了一个公司,但他可能还是在继续用 CUDA 的软件。 主要参考文献: 1)《ChatGPT 火了,英伟达笑了》——中国电子报 2)Nvidia: The GPU Company (1993-2006) 3)Nvidia: The Machine Learning Company (2006-2022) 4)NVIDIA CEO Jensen Huang - AI Keynote Session at MSOE 5)Jensen Huang Q&A: Why Moore』s Law is dead, but the metaverse will still happen 6)How Nvidia dominated AI—and plans to keep it that way as generative AI explodes 7)中信证券许英博:从英伟达看国产 GPU 的挑战与前景 - 小宇宙 - 创业内幕 来源:金色财经
lg
...
金色财经
2023-03-02
格灵深瞳:持续加强算法和软硬件研发投入
go
lg
...
瞳大脑的基础上,公司自主研发形成了基于
深度
学习
的模型训练与数据生产技术、3D立体视觉技术、自动化交通场景感知与事件识别技术、大规模跨镜追踪技术和机器人感知与控制技术等五大技术方向。在智慧金融、轨道交通等应用领域公司自研了行为识别、复杂三维物体识别的大模型。在产业链上和其他厂商有合作,例如芯片。 5、2022年管理比较严格,但公司的整体业绩增长比较好,特别是智慧金融领域,金融领域增长好的原因是什么? 答:公司的主要客户比较优质,需求韧性和付费能力较强,已经中标的智慧金融业务在2022年持续交付,公司力争持续开拓更多的优质客户,增强业绩韧性和可持续经营能力。 6、智慧金融业务方面的市场竞争情况? 答:公司认为金融业务领域的壁垒是综合性的。 从技术角度来讲,这块业务领域除了人脸识别,还包括大量的行为分析和物体识别技术要求,而公司的在上述领域的算法技术指标、产品性能、解决方案完整度在行业里面均处于较领先的地位。 从对银行客户需求、业务流程和应用场景的理解方面看,公司在智慧金融领域已经耕耘多年,具备先发优势,提供的产品和服务能够满足银行的需求。另外,公司产品的性价比较高,也可以满足客户的国产化、信创等方面的要求。 关于下游需求的持续性方面,首先,公司提供的是云边端一体化的产品,客户使用产品过程中产生的数据会沉淀在公司为其打造的AI系统中,未来产品进行升级换代时,由于系统数据迁移成本较高,公司产品会形成较强的粘性。 此外,目前公司提供的智慧金融产品所处细分赛道的渗透率较低,未来有更大的市场空间可供开拓。 7、公司其他下游比如商业零售以及城市管理领域,后续是否也能看到一个好的转机,今年这方面是不是有一些已经落地的项目或者案例? 答:在城市管理领域,公司的经营策略是寻找相对较优质的业务,即毛利率较高和客户回款情况较好的业务。 除安防业务外,公司在城市管理领域开展有交通业务,公司通过2022年设立的控股子公司开展智慧交通业务,包括车路协同等产品等,该控股子公司的核心人员有较深厚的交通领域专业经验,相信能为公司智能网联交通业务带来新活力。 在商业零售领域,公司目前的客户主要为一些较为优质的房地产企业,本年计划继续拓展客户;在智慧油站方面,公司有一定的先发优势,若今年客户重启油站网点的智能化改造需求,公司将积极参与开拓业务。 8、公司过去几年整个费用率比较稳定。 在2022年中报中研发人员有一个相对比较大的增长,是公司确实在研发端确实是投了一些人,还是公司人员的结构的统计口径变化导致人员的比较多的增长?人数激增的原因是什么?我们了解到很多同行业特别是做计算机软件类的公司说今年整体人员的投入规划会谨慎一点,公司今年在人员的费用和人员的投入方面是一个什么样的规划?从结构上来看,特别是销售和研发费用这两块,公司分别是什么样的看法?答:人员统计的口径没有任何变化。 人员数量还保持增长的核心在于公司力图拓展轨交、体育和元宇宙等场景,希望从研发到产品再到商业化落地能够取得良好进展,另外,公司也在持续加强算法和软硬件研发投入。 公司在招人的时候有所侧重,在现在这个阶段,侧重于增加研发人员占比,待产品更成熟时会增加销售端人员。公司将结合具体经营要求,有条不紊地安排和布局人员结构。计算机板块细分行业差异较大,而且每个公司的阶段差异也比较大。 目前,公司看好行业的未来发展趋势,愿意做比较坚定的前期投入;同时,公司重视高人效的保持和提升,增加员工数量不是盲目的,而是在应用和底层的算法和软硬件研发方面有针对性的增加,合理控制人员数量的增速,力争让公司在短期业绩增长和中长期发展动能上找到平衡。 (来源:界面AI) 声明:本条内容由界面AI生成并授权使用,内容仅供参考,不构成投资建议。AI技术战略支持为有连云。
lg
...
有连云
2023-03-02
软通动力:ChatGPT是人工智能领域的最新成果,一定程度上代表着技术的发展和迭代
go
lg
...
NLP、深度问答、智能对话、智能推理、
深度
学习
、知识图谱自动构建、大数据管理等20项人工智能技术的专利和软件著作权。在人工智能领域,公司拥有RPA+AI一体机、智能流程机器人、虚拟数字人等一系列人工智能产品及解决方案。近日,公司与百度达成合作,成为百度生成式对话产品—文心一言的首批生态合作伙伴,优先内测试用文心一言,集成其技术能力,并将与百度在产品研发、标准制定等多个领域展开合作,共同为用户打造全场景的人工智能解决方案及服务。此外,作为RPA+AI领域实践先行者,公司通过联合创新不断探索不同行业的场景化应用。公司联合对外经贸大学数字经济实验室及战略大客户,共同筹备成立“数字机器人联合研究与应用中心”,进一步探索RPA数字机器人在提供管理服务、科研大数据处理能力与提高综合效率的场景应用。公司注意到,ChatGPT为当下资本市场热点,请广大投资者理性看待并审慎进行投资决策。未来公司将继续关注人工智能领域的前沿动态,并持续进行技术探索。谢谢您的关注。 软通动力2022三季报显示,公司主营收入141.85亿元,同比上升18.46%;归母净利润6.72亿元,同比下降6.05%;扣非净利润5.94亿元,同比下降10.31%;其中2022年第三季度,公司单季度主营收入49.0亿元,同比上升12.75%;单季度归母净利润2.42亿元,同比下降5.56%;单季度扣非净利润2.05亿元,同比下降14.05%;负债率36.39%,投资收益845.06万元,财务费用7518.08万元,毛利率21.47%。 该股最近90天内共有6家机构给出评级,买入评级4家,增持评级2家;过去90天内机构目标均价为60.51。近3个月融资净流出2175.78万,融资余额减少;融券净流出776.81万,融券余额减少。根据近五年财报数据,证券之星估值分析工具显示,软通动力(301236)行业内竞争力的护城河良好,盈利能力一般,营收成长性一般。财务可能有隐忧,须重点关注的财务指标包括:有息资产负债率、应收账款/利润率。该股好公司指标2.5星,好价格指标2.5星,综合指标2.5星。(指标仅供参考,指标范围:0 ~ 5星,最高5星) 软通动力(301236)主营业务:为通讯设备、互联网服务、金融、高科技与制造等多个行业客户提供端到端的软件与数字技术服务和数字化运营服务。 以上内容由证券之星根据公开信息整理,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-03-02
凯撒文化:《我开动物园那些年》还没有上线运营
go
lg
...
研发剧情动画生成系统,在AI视频图像和
深度
学习
等领域,打造一个鲜活的虚拟世界等相关AI技术。感谢您的关注与支持。 投资者:郑董事长您好!请问关于贵司参股投资的双碧堂科技,其研发的《我开动物园那些年》手游产品有上线了?能说一下目前合作的情况吗? 凯撒文化董秘:您好,《我开动物园那些年》还没有上线运营。感谢您的关注与支持。 投资者:郑董事长您好!能介绍一下公司目前的游戏出海的情况吗?希望贵司抓住机遇,实现国内国外双循环,今年能有突破性进展。谢谢! 凯撒文化董秘:您好,出海方面,子公司酷牛互动已经开始尝试海外手机游戏的运营,先后定制研发了数款面向海外的手机游戏。随着国产游戏在海外市场的占有率逐渐提升,公司将探索国际业务机遇,积极开拓海外市场,持续提升综合盈利能力,承担起传播中国文化的责任。感谢您的关注与支持。 凯撒文化2022三季报显示,公司主营收入5.16亿元,同比下降25.47%;归母净利润-7511.99万元,同比下降131.03%;扣非净利润-7978.36万元,同比下降133.71%;其中2022年第三季度,公司单季度主营收入1.5亿元,同比下降32.73%;单季度归母净利润-2651.67万元,同比下降188.63%;单季度扣非净利润-3054.31万元,同比下降213.63%;负债率10.39%,投资收益203.9万元,财务费用454.86万元,毛利率19.62%。 该股最近90天内无机构评级。近3个月融资净流入7083.64万,融资余额增加;融券净流入477.51万,融券余额增加。根据近五年财报数据,证券之星估值分析工具显示,凯撒文化(002425)行业内竞争力的护城河一般,盈利能力较差,营收成长性一般。财务可能有隐忧,须重点关注的财务指标包括:货币资金/总资产率、应收账款/利润率、应收账款/利润率近3年增幅。该股好公司指标2星,好价格指标2星,综合指标2星。(指标仅供参考,指标范围:0 ~ 5星,最高5星) 凯撒文化(002425)主营业务:文化娱乐业务,文化娱乐业务具体包含版权运营、网络游戏研发与运营等业务 以上内容由证券之星根据公开信息整理,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-03-01
上一页
1
•••
106
107
108
109
110
•••
121
下一页
24小时热点
一文秒懂!巴菲特在他的“最后一次”股东大会上说了哪些“金句”?
lg
...
贺博生:黄金原油震荡回落下周行情走势预测及开盘操作建议
lg
...
股神巴菲特宣布2025年卸任CEO,大佬们怎么看?
lg
...
黄金下周价格走势如何?黄金多空行情走势分析及操作建议
lg
...
非农刺激黄金空头!空头还有下行空间!下周走势分析
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
32讨论
#链上风云#
lg
...
91讨论
#VIP会员尊享#
lg
...
1929讨论
#CES 2025国际消费电子展#
lg
...
21讨论