全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
Meta User DAO (MUD): 财富的新起点 NFT系列首发
go
lg
...
过结合区块链技术和创新性的数字身份标记
AI
算法
,MUD打造了一个独特的平台,为用户提供了一个互动、创造和投资的空间。 MUD的NFT系列首发,标志着这个生态系统的又一个里程碑。这些NFT作品将是绝对精品,每一件都是独一无二的数字艺术品。它们将首次亮相,并成为数字艺术收藏家和投资者的焦点。 参与MUD的NFT首发将为您提供巨大的机会。这些NFT作品可能会成为未来的数字收藏品,随着时间的推移,其价值可能会大幅增长。此外,MUD的首发也将为您提供参与这个数字生态系统的机会,共享其不断增长的成功。 想要参与MUD的NFT首发非常简单。您只需访问Gate.io,在首发日期前注册并准备好您的数字资产。一旦首发开始,您将能够浏览和购买这些珍贵的数字艺术品,同时也能够成为MUD社区的一员。 MUD的NFT首发只是这个数字生态系统不断发展的一个缩影。随着更多的创新、合作和机会的出现,MUD将继续为数字资产领域的未来铺平道路。我们鼓励您不仅要参与这次首发,还要紧密关注MUD的发展,因为未来充满了无限的可能性。 在12月8日,请密切关注我们的社交媒体和官方渠道,以获取首发的更多详细信息和特别活动。让我们一起迎接MUD的NFT首发,探索未来财富的新可能性! 关于Meta User DAO (MUD) Meta User DAO (MUD) 目标是打造一条基于人工智能链的去中心化自治组织公链,底层动态标记元界身份。旨在推动NFT市场的发展,通过结合区块链技术和数字身份标记
AI
算法
,MUD为用户提供了一个互动、创造和投资的空间。MUD的NFT首发将于12月8日在Gate.io上进行。 联系方式 如果您需要更多信息或媒体合作,请联系: MUD官方网站:http://metauserdao.net/ 邮箱:metauserdao@gmail.com Twitter:@mudmetaverse 免责声明:本文仅为信息分享目的,不构成投资建议。数字资产市场具有高度风险,请在投资前咨询专业人士。 来源:金色财经
lg
...
金色财经
2023-12-09
2024 信心满满!19家元脑生态伙伴与浪潮信息签署亿元分销协议
go
lg
...
浪潮信息的AI算力平台、AI资源平台和
AI
算法
平台为支撑,已经对接40多家芯片厂商,400+算法厂商,4000+系统集成商和分销商,通过多元的算力供给、全栈的AI Infra软件栈、丰富的大模型经验,实现"百模"与"千行"的对接,助力千行百业加速生成式AI产业创新,高效释放生产力。 在元脑生态和领先智算产品的助力下,浪潮信息分销伙伴23年实现高速增长。此次签约标志着分销伙伴信心满满,开启2024合作共赢的新篇章。未来,浪潮信息将从多层次赋能伙伴,提升服务能力、解决方案能力、销售能力,加大资源释放及市场拓展层面的引导,推动创新型、增值型产品的发展。通过聚合元脑生态力量,基于强大的AIGC全栈服务能力,驱动算力市场下沉,以新动能推动新发展,共同开创智算产业新格局。
lg
...
美通社
2023-12-08
Future3 Talk四期回顾丨DePIN未来趋势 哪些应用方向值得关注?
go
lg
...
账本。因此,未来AI不管是数据维度还是
AI
算法
维度,互相之间的经济行为一定是记载在区块链账本上的,包括如今Web3领域中提到很多的DeFi、智能合约衍生的DeFi协议、SocialFi协议等,都是构建以AI驱动的经济体的重要金融基础设施。综上,我觉得DePIN与AI的结合在于这两点,第一个是物理世界的基础设施,第二个是AI的金融基础设施。 彭昭(主持人):这两个视角也挺关键的。刚才杜总和林总都提到了DePIN和AI的结合点。接下来请各个项目代表结合自己的时间来谈谈DePIN和AI的结合。从Rock先开始吧。 Rock:我就举一个例子,以手机硬件为例。手机上有很多的视频和图片,这些都是很珍贵的数据集。但是用户又不想把这些资料上传到云端,因为有泄露隐私的风险。因此,我们就可以用联邦学习来链接这些用户设备上的数据,通过隐私计算来保证这些数据不离开用户本机,但是可以用于训练贡献梯度,即在本地完成训练贡献梯度,然后再到集成器里加权平均后经过几轮迭代使算法收敛。这样一来,手机厂商就可以利用这些训练好的模型去增强手机上的一些功能。例如,未来手机上的相机就可能会自带一些美图或者是物体消除AI调整照片的功能,即在手机本地就可以实现,不需要联网。这对于手机厂商来说,既提升了手机市场竞争力,又不用担心用云端算力增加成本的问题,是一个很值得发力做的方向。 对用户来说是手机性能上的提升,体验上的增强,也会便于手机厂商出货。他们会卷这些软件的
AI
算法
去赋能他们手机,同时也会卷硬件,然后把他们的手机里安上性能更强的芯片来使手机具有本地推理和计算能力,从而更快更好的完成
AI
算法
的训练和推理。这是手机行业上的一个应用,那么对应的电动汽车,智慧城市,健康医疗等AIoT涉及的领域还有很多用例,我就先不展开讲了。 彭昭(主持人):如果想到新的观点什么的,随时可以参与讨论。接下来请Yan进行分享。 Yan:我们昨天还在和一位上市公司的朋友讨论边缘AI与网络的结合。我们团队是英伟达的合作伙伴项目,所以我知道H100、H200显卡有多贵。但是就像Rock说的,现在在场景中有很多在边缘侧的算力服务需求,我们在做MetaBlox路由器的时候就考虑到了这样的需求。但这当中也有很多挑战,比如现在专业的编辑端的板卡和专业的WiFi板卡,它之间可以实现功能上互通,但性能并不是完美地匹配,需求却是非常高的。我给大家可以举个参考数据,例如现在大量的家用摄像头背后的边缘侧的处理就是一个很大的市场,也是一个非常好的现金流的生意,所以这些都是非常适合用DePIN与AI结合来做的。我觉得这是一个很好、很强的商业模式,Web2已经形成了很多正向的现金流的案例,那么Web3只会把这个趋势越做越宽,越做越大,希望大家一起努力。 彭昭(主持人):Zed刚才也提到,如果用GPT,可能会担心自己的数据并不能存在自己这里,但如果使用EMC的大模型,就能够保证自己数据的安全性,是这样吧? Zed:我就简单发散一下。我觉得还有件很重要的事:公平。去年年底GPT出来之后,大家都想去赶上AI这班快车,这其实是件好事,因为在AI这个行业里,大家的差距并没有那么大。Web2的创业是非常难的,流量垄断一切,但AI赛道的机会还有很多,很多人切入赛道比较早,做一些AIGC的应用,还是能获取一些红利。 但是很快红利就没有了,现在就开始卷得不得了。不但是大模型卷,应用也卷,卷到最后大家都在为英伟达和OpenAI打工——无非是你把他们的算力和模型拿来使用或者出租、出售,这其实不利于AI行业的发展。做AI创业,租用算力的成本很高,而且还不一定租得到,因为你不敢签长期协议。这是从AI创业者的角度来说。 第二是GPU芯片的生产厂家。一些国产厂商最新的GPU都会寄给我们做测试,通过去跑各种各样的环境,得到一个比较公平的数据。实话实说,差距还是挺大的,这个差距并不是硬件层面的,更多是软件层面的。硬件的制式可以做到7纳米或者更低,但实际上一跑起来就会发现,所谓CUDA兼容和原生CUDA还是两码事,所有应用都需要重新编译一遍,几乎不敢拿去让别人使用。这样的话,你的市场要怎么打开?但投硬件的话,成本又非常高,所以我们看到很多企业最终为了保险起见,还是会去购买英伟达。 但反过来说,是不是那些企业就没有竞争力呢?肯定不是的。如果通过DePIN的方式并入进来,跑一些小模型训练和推理服务,可能会发现性价比还是挺高的。EMC网络是按AI任务完成度计费的,虽然可能性能上有40%-50%的差距,但成本只有20%,这样使用起来性价比还是挺高的,而且任务也可以随意调度,不用在前期投入那么多资金去买硬件。 从这两个层面来讲,DePIN结合Web3的经济模型为用户和企业创造了一个更加公平的环境,再结合RWA,变现渠道就更简单一些。Web2的商业模式就是吸引更多用户,然后让用户付费,Web3有更高级的玩法。大家都知道金融化,金融不是洪水猛兽,如果结合一些金融产品的设计,可以让赛道里的一些创业者和企业更快地获得收益,那么他们就会有持续不断的资金来投入,这是加速行业发展的一件好事。 彭昭(主持人):接下来原本还有一个硬核的话题,就是RWA和DePIN的结合,但RWA也是一个新的叙事,门槛比较高,需要讨论很长时间,考虑到我们的时间比较紧,接下来不如趁着直播间有这么多朋友在线,我们每个项目聊一聊想和什么样的项目合作,找找合作的机会。 Zed:我谈一些真实需求,特别有趣。现在其实不缺客户,去中心化存储也没问题,就是数据传输太慢。上次我们想跑一个训练,把香港、新加坡、美国的IDC都问了个遍,最后发现最简单的办法就是买张机票,然后带着硬盘过去拷,否则这么大的数据量,根本不可能做到高速传输。我觉得数据传输对AI的发展是个极大的刚需,存储这方面我不是专家,海量数据调来调去,我也想不到什么特别好的办法,Rock和Ben在这方面应该都比较专业。 Rock:边缘设备,你直接在有数据的地方训练就会快很多。我也和其他行业交流过,他们宁可用卡车来传硬盘。 Zed:真的是这样,我一开始只是当作笑谈,但后来算了一下,好像这个方式确实是最可行的。说到边缘化的方式,小模型推理都没问题,速度已经非常快了,但对一些中大模型来说,要用DePIN的方式做到效率最高,就是要把闲置的加以使用,但并不是说离你最近的那个地方一定会闲置,算法做不到这一步,算法只能做到“你是最合适的,所以我往那儿去”,但做不到“我需要你,你就在哪儿”。 还有隐私计算,这部分我们也很早就在做了,未来大家担心的不仅是数据归谁所有的问题,还有数据会不会被滥用和盗取的问题。虽然目前还没有涉及个人数据的安全性问题,但很快就会提上日程,特别是对一些非常有价值的数据,当它的数据量不是特别大的时候,它的切片、加密等方式也是我们最近刚刚涉及的问题,这方面我研究得不是特别透,也想听听大家的建议。 Rock:可信计算是大趋势,有个核心的概念叫TEE(可信执行环境),这个很重要。未来的大趋势是在边缘设备上加TEE芯片,支持大家做可信计算。可信计算的核心之一是在CPU内做数据的加解密,数据即便是在RAM里,也是加密的,只有进到CPU里才进行加解密的动作,这就是TEE。所以未来TEE的CPU也是一个趋势,各个制造厂商都会加TEE的芯片,来解决数据隐私性的问题。我先补充这一点。 Zed:那天我们也提到了这点,但去跑数据之前它还是需要解密的。如果有更好的方式的话,我觉得未来会是个大有可为的垂直赛道。 杜宇:我补充一点,TEE还是有一些缺陷,需要先解密再去算,最新的方向一定是全同态。两个月前我见过一个在欧洲做全同态的团队,他们在用硬件的方式加速全同态的计算,说今天的全同态可能和两三年前的zk情况差不多。其实即使是今天的zk,也还没有做到完全可用,在速度、性能方面还存在问题,但全同态一定是最成熟、最完备的解决方法,虽然距离实现还有很大差距,对硬件的要求也非常高,特别是大模型训练,可能真的要等量子计算成熟了才有可能性。 彭昭(主持人):直播间有朋友想问下Zed,如果想和EMC项目合作,无论是作为builder、用户还是投资人,应该怎样来切入? Zed:EMC除了做DePIN外,还有EMC Hub。我相信做AI的一定知道Hugging Face和C站。Hugging Face和C站今年特别火,Github也是开发者非常熟悉的平台,但它们中间都是断层的。做过AI的可能都知道,在刚开始接触AI的时候,绝大多数精力并不是放在开发上面,而是去配置环境,这就特别浪费时间。整个社会分工已经很明晰了,为什么要反复造轮子呢? 所以我们当时就觉得可以在基础设施上加一个应用层,相当于把Github和AWS进行结合,做了EMC Hub。EMC Hub是一个类似于Hugging Face的模型聚合市场,基于Web3的经济系统让大家来贡献内容,你所贡献出来的内容是归自己所有的,如果别人去使用或是进行了商业化,你也可以从中获得收益。有赖于整个算力网络的支持,代码可以作为一个服务直接部署在网络上,就是“代码即服务”,算力提供者、开发人员甚至AI爱好者都可以把自己开发或微调出来的模型部署在上面当作服务,并获得收益。用声纹识别举例,其实开发难度并不大,有很多开源代码,只需要微调一下即可当作服务卖给很多有需要的企业。现在去做一个2C产品是很难的,但你如果把自己的API服务部署在EMC Hub上并收取费用,很快就能够变现,这就打开了很多新的创业空间。 彭昭(主持人):很清晰,大家应该也都知道怎样和EMC合作了,Rock和Yan也可以说一下。 Rock:我也说一下需求。我们base在硅谷,对于AI行业来说,这里的大厂也已经垄断了算力资源、一流的人才和数据集,我们这种创业公司的生存空间是很有限。我们目前的需求主要是人才,硅谷的算法工程师工资每年动辄20-30万刀起,我这次回国发现国内的算法人才也很多,特别是一些高校的同学们非常有天赋,能把业界前沿的论文快速消化吸收并且快速代码化的能力非常强。我们把AI搬到边缘上去需要三项最核心的技术:Efficient AI即模型的压缩优化、Federated Learning 联邦学习,以及刚才提到的Confidential Compute隐私计算,有对这三项技术感兴趣或是在这三个方向上有所积累的小伙伴和同学们请到Network3.ai上联系我们。 另外一个需求就是合作伙伴。如果有IoT厂商想尝试在边缘设备上训练模型赋能自己产品的,请联系我们,我们可以一起做个Pilot program。Web2的APP开发者如果不想去自己搭一套AIinfra,但是也想快速训练出自己app里的垂直模型的,也可以联系我们。谢谢! 彭昭(主持人):对刚刚说的这几个方向感兴趣的小伙伴可以给我们的视频号小助手留言,我们会有相关的同事来联系。接下来请Yan和Ben说一说。 Yan:我一直在关注视频号的互动,看到有网友问有没有社群的合作,我们是热烈欢迎社群合作的。现在几乎家家户户都有WiFi,现在既然要升级到WiFi6,同样的价格,为什么不换一个可以支持OpenRoamingTM的WiFi6 AX 6000设备呢?所以现在国内国外的需求都很旺盛,我们也非常欢迎社群合作,希望大家可以一起把OpenRoamingTM技术遍布到各家各户。有社群的朋友们欢迎跟我们联系,这是第一点。 第二,WiFi是一个难得的、每家每户、每个商店都需要的入口设备,伴随着WiFi6的换机潮,这些入口设备会是一个流量入口。拿小米举例,小米一般只做四个设备,手机、路由器、电视和汽车,其他都是生态链伙伴来做。我们也是希望聚焦入口设备,把兼容性做到最好。我们的WiFi路由器可以对接1-2T的SSD,设备都支持TrustZone,我本人在这个领域也有相当多专利,特别希望和存储、CDN等项目方合作,我们一起把DePIN部署下去。 第三,我们也希望与AI项目方开展深度合作。刚刚也提到我们团队是英伟达的合作伙伴项目,我们购买的所有机器都要支持SGX环境。但也有很多项目是用一个完整的机器作为可信执行环境,这也预示着隐私AI将是大势所趋。我个人特别看重边缘计算的隐私AI,早期各个小区施行人脸门禁的时候,大家都很担心自己的人脸信息被盗用,现在通过TEE环境可以确保即使黑客黑到设备里面成为root,也拿不走你的人脸信息。今后随着GPT等的发展,这个方向一定是大势所趋。MetaBlox虽然是WiFi网络,但因为我们是核心的入口设备,我们也支持边缘计算网络,希望可以和大家共建去中心化的隐私保护的边缘计算网络。 Ben:首先我们非常欢迎对IPFS技术有深入研究的开发者和我们一起去完善IPDN这个产品。同时,如果有开发者对去中心化存储有需求,比如你想构建一个dApp,用去中心化的CDN做数据、文件的存储,可以和我们联系,我们一起合作。 彭昭(主持人):我们的活动现在也接近尾声,接下来请杜总和林总每人做个一分钟的总结吧。 Leo:我也打个小广告。几周前香港金融科技周期间,我在Future3 Campus DePIN加速营的开营仪式上也讲到了DePIN应用链的启动,希望对DePIN赛道感兴趣的开发者和创业的团队和我们多多交流,看看DePIN应用链及其赋能能力能否支撑大家更快速地开发出DePIN产品的原型,也一起努力把DePIN赛道做得越来越热。 彭昭(主持人):DePIN应用链是个特别有价值的事情,很可惜今天的直播内容没涵盖这个话题,下次活动一定要包含进来。最后请杜总来总结。 杜宇:我个人感觉到今天为止,我们在DePIN方向上的探索还处于非常早期的阶段。今天我们主要讨论的是基础设施类别,上周是应用类,目前为止还没有看到整个DePIN生态完全的大爆发,我们今天和在场的几位行业先驱们一起在DePIN赛道做了更多的探索,希望能有更多示范性的案例出来给大家新的启发。 在全球范围内来说,我们的大湾区有着非常好的DePIN基础,但凡涉及到硬件都离不开大湾区,离不开深圳,这也是我们华人在整个Web3和DePIN赛道的巨大优势。我们希望能和从事物联网、硬件等行业的优秀企业家有更多交流,大家一起探讨如何将Web3与硬件、物联网相结合,探索出一片新的增长区域,我觉得这会是一件非常有意思的事。 彭昭(主持人):我也感觉随着讨论的深入,关注DePIN的朋友们的热情和数量都有了明显的提升,也期待下次和大家继续交流DePIN这个话题。我们今天的活动就到这里,谢谢各位。 来源:金色财经
lg
...
金色财经
2023-12-07
Future3 Campus访谈丨资本是如何看待AI+Web3的?
go
lg
...
全问题的一个 AI Robot。比如
AI
算法
里边就有一个算法叫异常检测,效果比从纯数学统计的方法直接去看数据的分布,检测出一个异常值要更好,所以这种 AI 可以更有效地去做安全方面的监测。 另外我还有看到一些项目使用
AI
算法
,比如大语言模型来检索整个Web3的新闻数据(不只是链上数据),进行信息聚合和舆情分析,形成一个AI Agent。比如用户可以直接在对话框里面去查某个代币最近30 天或者 90 天的网络舆情,用户是更偏向于看多,还是看空,给予相应的分值来体现热度;它还会有个曲线,通过这个曲线就可以判断一个代币它是在大家讨论到顶峰的时刻,还是在一个顶峰下降的时刻,还是在一个上升的时刻?这些可以辅助用户投资,我觉得也是一个挺有意思的应用方式。 但也有些其他的项目宣称自己的数据是AI的数据源蹭 AI 概念,我觉得这有点牵强,因为任何链上数据都可以是AI的数据源,因为它是公开的,所以有点蹭热点的嫌疑。 Matrix Partners-子熹:商业模式是现在数据领域的一个大问题,要找到一个解决方案很难。可能在ToC端,利用Web3的一些概念,比如token或分布式概念,可以让AI数据采用不同的商业模式。但如果是AI技术赋能数据,目前并没有太多亮点。 AI在数据处理和清洗方面可能有辅助作用,但这更多是内部的帮助,比如在产品开发过程中提升功能或用户体验。但从商业角度来说,并没有太大改变。 AI bot确实可以增加一些竞争力,辅助用户,但目前来说这不是一个很大的优势点,核心竞争力还是取决于数据源的质量。如果数据源充足,我可以获取我需要的信息。问题是,如果这些数据要商业化,那么我组合出来的东西必须能变现,我才愿意为数据支付费用。现在的问题是,市场不好,初创公司不知道如何变现数据,也没有足够的新进场初创公司。 我觉得目前有意思的反而是一些Web2的公司,它们使用了Web3的技术。比如一个合成数据的公司,他们通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI 大模型训练使用。他们在处理数据的时候涉及到很多隐私部署的问题,使用了Oasis区块链,可以有效避免了数据隐私问题。后面他们还想做一个数据交易所,将合成的数据包装在NFT里进行买卖,解决确权和隐私问题。我觉得这是一个很好的思路,它用Web3技术来辅助Web2解决问题,不一定局限于Web3的公司。不过,目前合成数据的市场还不够大,早期投资这样的公司有风险。如果下游市场做不起来,或者竞争对手太多,情况也会很尴尬。 在AI+Web3数据的领域,有没有投过一些比较好的项目,分别是什么方向的,决定投他们的关键因素是什么?您认为这类项目的核心竞争力是什么?AI是否会加强这个竞争力? Hashkey Capital-Harper:我们投的数据项目比较早,基本都是还没有特别强调ai的时候就投了,比如space and time、0xscope、mind network、zettablock等,投的关键是看他们的定位和数据质量。现在这些项目都会有AI的计划,基本也是先从聊天agent开始。space and time和chainML合作推出了创建ai agent的基础设施,其中创建的defi agent被用于space and time,也是一种结合AI的方式。 SevenX Ventures-Yuxing:如果项目与AI的结合做得很好,那么我可能会对其更感兴趣。决定我是否会投资的关键因素之一是项目是否有市场壁垒。我观察到很多项目宣称他们与AI结合能够提升效率,例如快速的数据查询功能。有些项目可以通过自然语言查询来快速获取链上NFT数据,比如查询最近交易最活跃的十大NFT。这样的项目可能有先发优势,但市场壁垒可能并不牢固。 真正的壁垒是AI本身的应用以及工程师如何将AI应用到具体场景中。工程师如果能熟练地进行模型微调,通常能够获得良好的效果。对于那些提升效率的项目来说,市场壁垒主要在于数据源。不仅仅是链上数据,还包括项目方如何处理和解析这些数据。例如之前提到的项目,它们能够通过
AI
算法
快速检索重要数据。然而,工程师进行模型微调的效果是有限的,真正的持续优势在于数据源的质量和其持续优化的能力。这也是为什么一些数据分析公司能够在市场中脱颖而出的原因,他们不仅提供数据源,还包括数据处理和分析的能力,区别往往在于团队的技术能力和人才。这些因素直接关系到AI结合应用的最终效果, 另外,我也关注那些能让AI变得更好的Web3技术项目,因为AI市场非常庞大。如果Web3技术能够增强AI的能力,那么应用场景将会非常广泛。这就是ZKML项目受到热捧的原因。但是,我注意到Web3项目往往容易被夸大或贬低其价值。像ZKML这样的项目,尽管备受关注,但它们的投资回报并不像人们期待的那样迅速,退出机制也并不清晰,因为它们发行代币的难度较大。因此,尽管这些项目富有创意并具有潜在价值,但是否值得现在投资,以及它们最终能带来多少回报,是投资者需要仔细考量的。 Matrix Partners-子熹:我们投资了一个结合AI和Web3的公司,它是一个数据标注公司,叫Questlab。他们使用区块链技术提供数据标注的众包服务。数据标注原本是一个直营或者是分包的行业,很难做到知识领域的全覆盖。 就传统的数据标注来说,一般分为三个类型:直营、分包和众包。但实际上做众包的人比较少。这三种模式的公司在选择数据标注服务时需要考虑的因素有:价格是否便宜、标注的质量是否高、效率如何。还有一个就是能否覆盖他们所在的行业。如果你只是做一些通用模型的语言或图片的标注,其实很简单,就是识别英文字或图片。再难一点,比如需要区分猫、狗、月亮、婴儿车等,这也不是很难。但如果你需要做的是更专业的标注,比如语音机器人社区需要的标注,那就复杂多了。他们可能需要标注各种方言和多种语言,包括中文方言,英文方言、以及各种小众地区的语言等,很少有传统的工作室愿意做这样的工作。 一个更复杂的例子是法律加AI公司,需要标注大量的法律知识来训练各种模型,要找到既懂法律又能进行专业标注的人非常难,需要同时懂得各国法律,还要了解各种专业法律领域,如合同法、租赁法、民法、刑法等。市场上几乎没有一家数据标注公司能够提供如此专业的服务。法律是专业的,金融、生物、医疗、教育等也是如此。所以,这些领域的标注工作一般只能由内部团队来完成,他们使用众包的方法,这样就能解决知识专业覆盖的问题。 我们认为,利用区块链进行众包是一个很好的方向,就像YGG在Gamefi领域做的事一样。这是我们认为是一个有前景的方向。 另外,我们觉得在开源模型社区里面,也会有一些很好的机会。比如Polychain投的一个项目是一个类似于web3 的hugging face,用来解决模型内容创造者经济的问题。 其他的AI和Web3的结合,我觉得ToC方向如果能结合一些token的玩法,提高整个社群的粘性、日活和情感,我们觉得这是可行的。这也方便投资人来变现,但是市场规模如何也不是很确定。这就是我对AI和Web3的一些看法。我觉得如果纯ToB的业务,没必要用Web3,就用Web2的方式做就挺好的。 Qiming Venture Partners-唐弈:目前我们投的有一些数据项目正在通过链上数据在安全场景中进行工作。我认为一些AI基本的模式识别或特征发现工作都有涉及,并且效果还可以。然而,更高级的工作,如将大量活动数据输入模型并识别多种信息,目前仍在尝试阶段,效果尚需验证。除了安全领域外,许多其他领域也存在类似情况。 最近的一个例子是我们投的NFTGo,它是一个基于大数据分析去做NFT的定价,具有一定的准确性,并计划将其用于价格Oracle等用途。虽然这一体系听起来很有趣,但在产品中以及用户接受程度方面,仍需要进行验证。因为即使目前可能能够达到90分或85分的准确性,用户可能需要更高水平,比如98分或95分,因此还需要进一步验证。因此,虽然一些项目正在将数据分析和模式识别等简单AI能力应用于产品中,但是否成为关键因素尚未得到验证。 而对于投资意愿方面,我个人不会因为项目有一些AI的噱头就更倾向于投资,因为我认为实际效果和项目是否能实现其目标以及带来好处更为重要。如果一个项目只是在名字或市场营销上有亮点,作为一种营销手段,以吸引更多关注或曝光,我能理解。但在投资决策中,我认为更重要的是实际效果。 像一些项目在做ZKML,这个赛道似乎备受瞩目,但是同时也有很大问题,就是它到底用于什么场景。我觉得目前不确定性特别强烈,更多还是很宏大的叙事。 从整体行业发展来看,AI + Web3数据这一赛道未来有哪些潜在的机会或发展方向?未来,AI是否有可能彻底升级数据产品,引入新概念?是否会增强用户的付费意愿? Hashkey Capital-Harper:肯定是有潜在机会的。未来发展方向其实还是落后于web2 的AI,那里的创造力明显更强,web3这边的AI大概率也是web2 AI的映射实现吧。 Matrix Partners-子熹: 我觉得最近的妙鸭相机让大家意识到,其实人们对AI产品还是有付费的意愿的,这不像传统的SaaS产品或游戏,人们期望免费才会使用。用户对AI的付费意愿其实还是挺强的。 未来的话我可以提供一点想法。我们在做数据标注流程中有一个关键步骤叫做预标注,就是我们训练一个模型,让模型来进行初级标注。这一步非常有价值,可以节约很多人力成本。我们将原始数据投入预训练的模型进行预标注,然后进行半自动化的数据处理,最终手动进行精确标注。预标注可以显著提高效率,可能原本需要100人的工作,现在可能只需要50到70人。 另外预标注方面也涉及到AI和人的协作,通过你的反馈可以不断提高模型的预标注能力,从而减少数据标注团队的人数需求。随着AI和人的协作越来越好,原本100人的团队可能只需要30人。但是,这个过程有一个下限,即使AI协作做得非常好,仍然需要一定数量的人工进行最终的标注和审核。 在其他领域由于我不是数据科学家,我没有亲自清洗过数据或使用数据进行SQL查询,所以我不清楚AI在这些领域具体能提供多大的帮助。 Qiming Venture Partners-唐弈:我觉得长期内与Web3和AI是应该有一些交集的。比如从意识形态的角度,Web3的价值体系是可以结合到AI上的,很适合作为bot的账号体系或者说价值转化体系。想象一下,一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。这些概念有点科幻,实际应用可能还有很长的路要走。 第二个可能的方向验证AI模型的输出是否基于特定类别或特定的模型,或者特定的数据,并且是否可信。这些领域在可信的AI模型中可能有一些用处。从技术角度来看这些非常有趣,但是否有足够的市场需求尚不确定。 另外一方面是AI的出现使数据内容生成变得泛滥和廉价。对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权可能需要一个全新的体系,包括创作者和智能体的角色。但总的来说,这些问题可能仍然有待解决,而故事性的内容可能需要更长的时间来发展。在短期内,我们应该继续关注数据底层的质量,并期待模型能够变得更强大。 另外在商业化方面,确实数据产品商业化非常难。但是我认为从商业角度来看,AI可能短期内不是解决数据产品商业化问题的解决方案。商业化需要更多的产品化努力,而不仅仅是数据化能力。因此,这些项目可能需要开发其他产品来实现商业化。 来源:金色财经
lg
...
金色财经
2023-12-06
POW系新代币概览:矿工、社区和矿机厂商的胜利?
go
lg
...
是叠加了POW和AI的概念。TAO属于
AI
算法
模型市场,世界各地的开发者提供
AI
算法
模型,形成
AI
算法
模型市场;用户选择自己需要的算法模型。评价越高、使用越多的模型,其开发者将得到越多的激励。CLORE属于AI算力租赁平台,配置了将近6000个英伟达的中高端GPU芯片,可出租用于挖矿、渲染、AI训练等。为网络提供高性能芯片的出租者将会获得CLORE代币激励。 四、结论 可见,POW系项目的复兴,是多方合力推动的结果。本质上,矿工算力寻找新的POW项目,社区寻找低市值、叙事好的项目,矿机厂商寻找能够获得社区支持的项目。与此同时,AI的兴起,将算力提高到了数据时代基础设施的程度,而POW项目自带算力,容易与AI结合,造成叙事的二次叠加。 但是,大量的POW项目鱼龙混杂,需要对项目叙事、业务、团队、社区进行调查了解,思考其可持续发展的概率,以及获得大资金支持的概率。 来源:金色财经
lg
...
金色财经
2023-12-06
Footprint Analytics x Future3 Campus联合发布AI与Web3研报(下篇)
go
lg
...
s 迅速适应并采用了 LLM。与传统
AI
算法
相比,LLM 在数据识别、处理和分析方面的效率和效果有了显著提升。LLM 的出现帮助 GoPlus 加快了在 AI 自动化检测方面的技术探索,在动态模糊测试的方向上,GoPlus采用了LLM技术能够有效的生成交易序列,探索更深的状态来发现合约风险。 (2)AI 安全助手 GoPlus 同时正利用基于 LLM 的自然语言处理能力,开发 AI 安全助手,以提供即时的安全咨询和改善用户体验。AI 助手基于 GPT 大模型,通过前端业务数据的输入,开发了一套自研的用户安全Agent,能够根据问题自动化的去分析、生成解决方案、拆解任务、执行,为用户提供需要的安全服务。AI 助手能简化用户与安全问题之间的交流,降低用户理解的门槛。 在产品功能上,由于 AI 在安全领域的重要性,未来 AI 有潜力彻底改变现有的安全引擎或病毒杀毒引擎的结构,出现以 AI 为核心的全新引擎架构。GoPlus 将持续对 AI 模型进行训练和优化,以期将AI从辅助工具转变为其安全检测引擎的核心功能。 在商业模式上,虽然目前 GoPlus 的服务主要面向开发者和项目方,但公司正在探索更多直接面向 C 端用户的产品和服务,以及与AI相关的新收入模式。提供高效、准确、低成本的 C 端服务将是 GoPlus 未来的核心竞争力。这需要公司持续研究,在与用户交互的 AI 大模型上进行更多的训练和输出。同时,GoPlus公司也将与其他团队合作,共享其安全数据,并通过合作推动安全领域内的 AI 应用,为未来可能带来的行业变革做好准备。 1.4 Trusta Labs Trusta Labs成立于2022年,是一家由人工智能驱动的Web3领域数据创业公司。Trusta Labs专注于利用先进的人工智能技术对区块链数据进行高效处理和精准分析,以构建区块链的链上声誉和安全基础设施。目前,Trusta Labs 的业务主要包括两款产品:TrustScan 和 TrustGo。 (1)TrustScan,TrustScan是一款专为B端客户设计的产品,主要用于帮助Web3项目在用户获取、用户活跃和用户留存方面进行链上用户行为分析和精细化分层,以识别高价值且真实的用户。 (2)TrustGo,一款面向 C 端客户的产品,其提供的 MEDIA 分析工具,可以从五个维度(资金金额、活跃度、多样性、身份权益、忠诚度)对链上地址进行分析和评估,该产品强调对链上数据的深入分析,以提升交易决策的质量和安全性。 Trusta Labs 与 AI 的发展与规划如下: 目前 Trusta Labs 的两款产品均是利用AI模型对链上地址的交互数据进行处理和分析。区块链上地址交互的行为数据,均属于序列数据,这类型的数据非常适合用于 AI 模型的训练。在对链上数据进行清洗、整理和标记的过程中,Trusta Labs 将大量的工作交给 AI 来完成,极大地提高了数据处理的质量和效率,同时也减少了大量的人力成本。Trusta Labs 利用 AI 技术对链上地址交互数据进行深入分析和挖掘,对于 B 端客户而言,可以有效地识别出较大可能性的女巫地址。在已使用 Tursta Labs 产品的多个项目中,Tursta Labs 均较好地防范了潜在女巫攻击的发生;而对于 C 端客户,通过 TrustGo 产品,利用现有的 AI 模型,有效帮助用户深入了解了自己的链上行为数据。 Trusta Labs一直在紧密关注LLM模型的技术进展和应用实践。随着模型训练和推理成本不断降低,以及Web3领域大量语料和用户行为数据的积累,Trusta Labs将寻找合适的时机,引入LLM技术,利用 AI 的生产力为产品和用户提供更深入的数据挖掘和分析功能。在目前 Trusta Labs 已经提供丰富的数据的基础上,希望可以利用 AI 的智能分析模型,为数据结果提供更多合理、客观的数据解读功能,如针对 B 端用户提供定性和定量解读已抓取到女巫账户的分析,让用户更理解数据背后的原因分析,同时可以为 B 端用户向其客户投诉解释时提供更翔实的材料佐证。 另一方面,Trusta Labs 也计划利用已开源或者较为成熟的 LLM 模型,并结合以意图为中心的设计理念来构建 AI Agent,从而来帮助用户更快捷、更效率地解决链上交互的问题。就具体应用场景而言,未来通过 Trusta Labs 提供的基于 LLM 训练的 AI Agent 智能助理,用户可以直接通过自然语言与智能助理进行交流,智能助理即可“聪明”地反馈链上数据相关的信息,并针对已提供的信息进行后续操作的建议和规划,真正实现以用户意图为中心的一站式智能操作,极大降低用户使用数据的门槛,简化链上操作的执行。 此外,Trusta 认为,未来随着越来越多基于 AI 的数据产品的出现,每个产品的核心竞争要素可能不在于使用何种 LLM 模型,竞争的关键因素是对已掌握数据更深层次的理解和解读。基于对已掌握数据的解析,再结合 LLM 模型,才能训练出更“聪明”的 AI 模型。 1.5 0xScope 0xScope,成立于 2022 年,是一个以数据为核心的创新平台,其专注于区块链技术和人工智能的结合。0xScope 旨在改变人们处理、使用和看待数据的方式。0xScope 目前针对 B 端和 C 端客户分别推出了:0xScope SaaS products 和 0xScopescan。 (1)0xScope SaaS products,一个面向企业的 SaaS 解决方案,赋能企业客户进行投后管理、做出更好的投资决策、了解用户行为,并密切监控竞争动态。 (2)0xScopescan,一个 B2C 产品 ,其允许加密货币交易者调查选定区块链的资金流动和活动情况。 0xScope 的业务重点是利用链上数据抽象出通用数据模型,简化链上数据分析工作,将链上数据转化为可被理解的链上操作数据,从而帮助用户对链上数据进行深入分析。利用 0xScope 提供的数据工具平台,不仅可以提升链上数据质量,挖掘数据暗藏的信息,从而揭示更多的信息给用户,该平台也极大降低了数据挖掘的门槛。 0xScope 与 AI 的发展与规划如下: 0xScope 的产品正在结合大模型进行升级,这包含两个方向:第一,通过自然语言交互的模式进一步地降低用户的使用门槛;第二,利用 AI 模型提高在数据清洗、解析、建模和分析等环节的处理效率。同时,0xScope 的产品中即将上线具有 Chat 功能的 AI 互动模块,该功能将极大地降低用户进行数据查询和分析的门槛,仅通过自然语言即可与底层的数据进行交互和查询。 但在训练和使用AI的过程中,0xScope 发现其中仍面临这以下挑战:第一,AI 训练成本和时间成本较高。在提出一个问题后,AI 需要花费较长时间才能进行回复。因此,这个困难会迫使团队需要精简和聚焦业务流程,专注于垂直领域的问答,而不是让其成为一个全方位的超级AI助理。第二,LLM 模型的输出是不可控的。数据类的产品希望给出的结果是精准的,但目前LLM模型给出的结果很可能与实际的情况有一定出入,这对数据类产品的体验是非常致命的。此外,大模型的输出有可能会涉及到用户的隐私数据。因此,在产品中使用 LLM 模式时,团队需要对其有较大程度的限制,以使得 AI 模型输出的结果可控且精准。 未来,0xScope 计划利用 AI 专注于特定的垂直赛道并进行深耕。目前基于已大量积累大量链上数据,0xScope 可以对链上用户的身份进行定义,后续将继续利用 AI 工具抽象链上用户行为,进而打造出一套独特的数据建模的体系,通过这套数据挖掘和分析体系揭示出链上数据暗含的信息。 在合作方面,0xScope 将聚焦在两类群体:第一类,产品可以直接服务的对象,比如开发者、项目方、VC、交易所等,该群体需要目前产品所提供的数据;第二类,对 AI Chat 有需求的合作伙伴,如 Debank、Chainbase 等,他们只需要有相关的知识和数据,便可以直接调用 AI Chat。 VC insight——AI+Web3 数据公司的商业化和未来发展之路 本节内容通过采访了 4 位资深的 VC 投资人,将从投资和市场的视角来看 AI+Web3 数据行业的现状和发展,Web3 数据公司的核心竞争力以及未来的商业化道路。 2.1 AI+Web3 数据行业的现状和发展 目前,AI 与 Web3 数据的结合正处于一个积极探索的阶段,从各个头部 Web3 数据公司的发展方向来看,AI 技术以及 LLM 的结合都是必不可少的趋势。但同时 LLM 有其自身技术局限性,尚不能解决当前数据行业的很多问题。 因此,我们需要认识到并非盲目地与 AI 结合就能够增强项目的优势,或者是使用 AI 概念进行炒作,而是需要探索真正具有实用性和前景的应用领域。从 VC 的视角,目前 AI 与 Web3数据的结合已经有以下方面的探索: (1)通过 AI 技术来提高Web3 数据产品的能力,包括 AI 技术帮助企业提高内部数据处理分析的效率,以及相应提高对用户的数据产品的自动化分析、检索等能力。例如 SevenX Ventures 的Yuxing 提到 Web3 数据使用 AI 技术最主要的帮助是效率方面,比如 Dune 使用 LLM 模型做代码异常检测和将自然语言转化生成 SQL 去信息索引;还有用 AI 做安全预警的项目,
AI
算法
做异常检测效果比从纯数学统计更好,所以可以更有效地去做安全方面的监测;此外,经纬创投的子熹提到企业可以通过训练 AI 模型进行数据的预标注,能节约很多人力成本。尽管如此,VC 们都认为,在提高 Web3 数据产品的能力和效率方面,AI 起到的是辅助作用,例如数据的预标注,最终可能仍需要人工审核来确保准确性。 (2)利用 LLM 在适应性和交互上的优势,打造 AI Agent/Bot。例如使用大语言模型来检索整个 Web3 的数据,包括链上数据和链下新闻数据,进行信息聚合和舆情分析。Hashkey Capital 的 Harper 认为这类的 AI Agent更加偏向于信息的整合、生成,以及和用户之间的交互,在信息准确性和效率上会相对弱一些。 上述两方面的应用尽管已经有不少案例,但是技术和产品仍然在探索的早期,因此未来也需要不断地进行技术优化和产品改进。 (3)利用 AI 进行定价及交易策略分析:目前市场中有项目利用 AI 技术给 NFT 进行价格估算,如启明创投投资的 NFTGo,以及有些专业交易团队使用 AI 进行数据分析和交易执行。此外 Ocean Protocol 近期也发布了一个价格预测的AI产品。这类的产品似乎很有想象力,但在产品中、用户接受程度方面,尤其是准确性方面仍需要进行验证。 另一方面,有不少 VC,尤其是在 Web2 有投资的 VC会更关注提到 Web3 和区块链技术能够为 AI 技术带来的优势和应用场景。区块链具有公开可验证、去中心化的特点,以及密码学技术提供隐私保护能力,加上 Web3 对生产关系重塑,可能能够给 AI 带来一些新的机会: (1)AI 数据确权与验证。AI 的出现使数据内容生成变得泛滥和廉价。启明创投的唐弈提到对于数字作品等内容,难以确定其质量和创作者。在这方面,数据内容的确权需要一个全新的体系,区块链可能可以提供帮助。经纬创投的子熹提到有数据交易所将数据放在NFT中进行交易,可以解决数据确权的问题。 另外,SevenX Ventures 的 Yuxing 提到Web3 数据能够改善 AI 造假和黑盒问题,当前 AI 在模型算法本身和数据方面都存在黑盒问题,会导致输出结果的偏差。而Web3的数据具有透明性,数据是公开可验证的,AI模型的训练源和结果都会更加明晰,使得AI更加公正,减少偏见和错误。但当前 Web3 的数据量还不够多,不足以给 AI 本身的训练赋能,因此短期不会实现。但是我们可以利用这一特性,将 Web2 数据上链,来防止 AI 的深度伪造。 (2)AI 数据标注众包及 UGC 社区:目前传统 AI 标注面临效率和质量较低的问题,尤其是在涉及到专业知识领域,可能还需要交叉学科知识,传统的通用数据标注公司是不可能覆盖的,往往需要专业团队内部来做。而通过区块链和 Web3 的概念引入数据标注的众包,则能很好地改善这个问题,例如经纬创投投资的Questlab,他们使用区块链技术提供数据标注的众包服务。此外,在一些开源模型社区中,也可以使用区块链概念来解决模型创作者经济的问题。 (3)数据隐私部署:区块链技术结合密码学相关技术可以保证数据的隐私和去中心化。经纬创投的子熹提到他们投资的一个合成数据公司,通过大模型生成合成数据去使用,数据可以主要应用在软件测试、数据分析,以及 AI 大模型训练使用。公司在处理数据的时候涉及到很多隐私部署的问题,使用了 Oasis区块链,可以有效避免了隐私和监管问题。 2.2 AI+Web3 数据公司如何打造核心竞争力 对于 Web3 技术公司来说,AI 的引入能够一定程度上增加项目的吸引力或关注度,但是目前大部分 Web3 技术公司相关结合 AI 的产品并不足以成为公司的核心竞争力,更多是在提供了更友好的体验,以及效率的提升。譬如 AI Agent 的门槛并不高,先做的公司可能在市场有先发优势,但并不产生壁垒。 而真正在 Web3 数据行业中产生核心竞争力和壁垒的应该是团队的数据能力以及如何应用 AI 技术解决具体分析场景的问题。 首先,团队的数据能力包括了数据源及团队进行数据分析和模型调整的能力,这是进行后续工作的基础。在采访中,SevenX Ventures、经纬创投和 Hashkey Capital 都一致提到了 AI+Web3 数据公司的核心竞争力取决于数据源的质量。在这个基础上,还需要工程师能够基于数据源熟练地进行模型微调、数据处理和解析。 另一方面,团队 AI 技术具体结合的场景也非常重要,场景应该是有价值的。Harper 认为,尽管目前 Web3 数据公司与 AI 的结合基本都是从 AI Agent 开始,但他们的定位也不同,例如 Hashkey Capital 投资的 Space and Time,和 chainML 合作推出了创建 AI agent 的基础设施,其中创建的 DeFi agent 被用于 Space and Time。 2.3 Web3 数据公司未来的商业化道路 另一个对于 Web3 数据公司很重要的话题是商业化。长期以来,数据分析公司的盈利模式都比较单一,大都 ToC 免费,主要 ToB 盈利,这很依赖于 B 端客户的付费意愿。在 Web3 领域,本身企业的付费意愿就不高,加上行业初创公司为主,项目方难以支撑长期的付费。因此目前 Web3 数据公司在商业化的处境上比较艰难。 在这个问题上,VC 们普遍认为当前 AI 技术的结合,仅应用在内部解决生产流程的问题,并没有改变本质上的变现难问题。一些新的产品形式如 AI Bot 等门槛不够高,可能一定程度上在 toC 领域增强用户的付费意愿,但仍然不是很强。AI 可能短期内不是解决数据产品商业化问题的解决方案,商业化需要更多的产品化努力,例如寻找更加合适的场景,和创新的商业模式。 在未来 Web3 与 AI 结合的路径上,利用 Web3 的经济模型结合 AI 数据可能会产生一些新的商业模式,主要在 ToC 领域。经纬创投的子熹提到 AI 产品可以结合一些 token 的玩法,提高整个社群的粘性、日活和情感,这是可行的,也更容易变现。启明创投的唐弈提到,从意识形态的角度,Web3 的价值体系可以结合到AI上的,很适合作为 bot 的账号体系或者说价值转化体系。例如一个机器人拥有自己的账户,可以通过其智能部分赚钱,以及为维护其底层计算能力付费等。但这个概念属于未来的畅想,实际应用可能还有很长的路要走。 而在原来的商业模式,即用户直接付费上,需要有足够强的产品力,让用户有更强的付费意愿。例如更高质量的数据源、数据带来的效益超过支付的成本等,这不仅仅在于 AI 技术的应用,也在数据团队本身的能力之上。 关于Footprint Analytics Footprint Analytics是一家区块链数据解决方案提供商。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 30 条公链生态的 NFT,GameFi 以及 钱包地址资金流追踪数据。 关于Future3 Campus Future3 Campus是由万向区块链实验室和HashKey Capital共同发起的Web3.0创新孵化平台,重点聚焦Web3.0 Massive Adoption、DePIN、AI三大赛道,以上海、粤港澳大湾区、新加坡为主要孵化基地,辐射全球Web3.0生态。同时,Future3 Campus将推出首期5000万美金的种子基金用于Web3.0项目孵化,真正服务于Web3.0领域的创新创业。 来源:金色财经
lg
...
金色财经
2023-12-05
马上消费参与制定全球首个金融风控大模型国际标准
go
lg
...
而制定。与传统风控模型相比,基于大规模
AI
算法
的风控模型能高效融合海量的金融反欺诈先验知识形成大模型,在应用时能显著提升模型的风险识别性能以及跨场景的泛化能力。该标准适用于金融零售信贷场景的风险控制管理,帮助金融机构在运用AI技术生成金融风控大模型的过程中提供参考,包括应用场景、基本条件、模型创建以及迭代等环节。启动会现场还明确了标准的研制方案,并计划于明年9月正式发布,为金融机构信贷风控建模提供参考指南。会议现场,马上消费数据智能与风控研发部高级总监王思远还做主题演讲,向与会各机构代表介绍我司发展情况,并就数据决策能力、AI大模型应用等做了重点分享。
lg
...
金融界
2023-12-04
科大讯飞:讯飞星火会以用户体验为中心不断迭代优化
go
lg
...
您好,科大讯飞算力能够满足未来一段时间
AI
算法
模型训练和推理的需求。我们在1024发布会上也说明了讯飞星火当前与GPT4的差距,同时我们也有信心在未来逐步迎头赶上。 投资者:您好,1.未来大模型什么知识都能回答,我们还需要像现在这样的教育和学习知识吗?我们教育板块会否失去价值?2.我们能否在大模型和机器人这一块不计成本的快速投入,抢占住未来的制高点? 科大讯飞董秘:您好,科大讯飞多年来一以贯之的脚踏实地推进人工智能技术与产业进步,公司会一步一个脚印,扎实推进星火大模型升级迭代,感谢您的关注。 投资者:请问公司有无进展能让大模型有了自己的思考能力,譬如应用于机器视觉或者自主进行逻辑数学运算? 科大讯飞董秘:您好,科大讯飞始终坚持脚踏实地推进技术进步与产业发展,星火的各项能力会持续升级,感谢关注。 投资者:公司做为GPT效果国内数一数二的存在,营销做的非常差,还被一些榜单误导投资者信心。建议公司重视起来推广,让大家知道谁才是国内gpt NO.1 科大讯飞董秘:您好,感谢您对星火大模型的关注,谢谢您的建议。 投资者:公司的产品是否考虑到价格过贵等因素 难道好的学习机真比苹果手机还好吗 流畅度能用几年呢 科大讯飞董秘:您好,讯飞AI学习机旨在通过多种AI技术在产品中的应用落地,给学生的自主学习提供AI辅导,覆盖预习、复习、备考、作业辅导等多种场景,有效解决孩子学业提升慢、提升难,良好学习习惯难以养成,以及家长辅导难等问题,用户推荐NPS值持续保持行业第一。感谢您的关注。 投资者:公司的债券种类以及评级可以介绍一下吗 科大讯飞董秘:您好,公司目前不涉及相关业务。 投资者:想了解一下公司的股本结构 科大讯飞董秘:您好,相关数据请关注公司定期报告,谢谢。 投资者:现在很多地区都在开展未来社区建设,这是社区层面的构建,建议公司加快研发一体式,模块式,集成式的未来之家。让屋内的所有家居家电不再是冷冰冰的摆设,依托星火大模型都能理解思考,能同人交流,加上家庭机器人,未来之家就很有范了。一体化的未来之家公司应该自主研发,整体自主品牌建设,而不是拆分成零散的各生态公司。房地产业的发展已见天花板,但未来之家的建设还未开始,随着年轻人对美好生活的向往更科技化,市场巨大。 科大讯飞董秘:您好,感谢您的热心建议。 投资者:董秘你好,国外gpt天天停止注册,星火是否做好了应对用户大规模注册和使用的措施,能不能顶的住 科大讯飞董秘:您好,目前星火能够满足用户的注册需求。 投资者:明明讯飞星火大模型效果超群,可是不管是在哪里都没有看到星火大模型的宣传广告,甚至很多人都不知道。请公司重视宣传,加大广告投入,重视抖音 快手自媒体等途径的推广 科大讯飞董秘:您好,感谢您的热心建议。 投资者:您好,请问贵公司智能扫地机器人是否已经量产? 科大讯飞董秘:您好,公司有序推动扫拖机器人的生产、销售,预计2023年底或者2024年上半年上架至天猫、京东等电商平台销售,谢谢。 投资者:请问,你们目前有多少算力规模,是否可以满足明年追赶GPT4的算力需求??明年实现追赶GPT4的目标最大的阻碍是什么 科大讯飞董秘:您好,科大讯飞算力能够满足未来一段时间
AI
算法
模型训练和推理的需求。我们在1024发布会上也说明了讯飞星火当前与GPT4的差距,同时我们也有信心在未来逐步迎头赶上。 投资者:公司的智慧心育V1.0为73.8万/套,公司中报显示智慧心育已覆盖2600所学校,若全部收费,仅智慧心育营收就可达19亿,智慧心育覆盖校中是不是一些还没有正式收费? 科大讯飞董秘:您好,公司智慧心育业务提供心育评测、减压星球等全栈产品和服务,具体根据项目服务内容收费。 投资者:虽然星火功能很强大,但目前许多用户并不知道星火AI能力的调用方法,星火的巨大价值并没有发挥出来。建议公司在星火尽快上线社区版块,可以在这版块上传星火的使用宝典,可以直播介绍星火的特色功能,可以让用户交流星火的使用心得,这样会增加用户活跃度和用户粘度,将会十分有利于星火的快速推广? 科大讯飞董秘:您好,感谢您的热心建议。 投资者:中报显示公司打造了金融行业的数字员工平台,为多个金融机构每年提供100+数字员工。请问为金融机构提供的数字员工是如何收费? 科大讯飞董秘:您好,目前数字员工的商业模式以项目型为主。 投资者:中报显示公司为70多家金融机构打造了智能客服系统,这些系统可平滑地过渡到星火金融智能客服系统。请问这些机构的客服系统若升级到星火金融智能客服系统是否需购置星火一体机才能完成私有化部署需要? 科大讯飞董秘:您好,公司根据用户具体需求,可在原有系统基础上升级部署星火金融智能客服系统。 投资者:截至到2023年11月20日贵公司的股东人数是多少?.谢谢 科大讯飞董秘:您好,公司在定期报告中披露对应时点的股东信息。感谢关注。 投资者:英伟达H200芯片的算力是H100的一倍以上但能耗却是100的一半.大模型的主要支出的能耗开销是非常大的。我想问讯飞现在算力来说能和H100不相上下吗?在H200国内不可能买到的前提下讯飞大模型的算力成本是不是要比国外能买到H200芯片的公司成本高出很多如果这样那我们讯飞的竞争力是什么毕竟H200要比H100的算力还要高一倍呢!随着时间推移差距不是越拉越大吗。 科大讯飞董秘:您好,科大讯飞算力能够满足未来一段时间
AI
算法
模型训练和推理的需求。我们在1024发布会上也说明了讯飞星火当前与GPT4的差距,同时我们也有信心在未来逐步迎头赶上。 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-12-03
加密与AI的碰撞:机遇、代表性项目及未来
go
lg
...
DAO)。这些DAO由智能合约管理,由
AI
算法
提供支持,可以独立运行和决策,并在没有人为干预的情况下执行交易。历来,加密DAO的管理并不理想,因为人类的情感和对金钱的渴望往往盖过了DAO的最初目的。实施AI系统可以通过自动化流程和减少对中介的需求来彻底改变各行各业,在提高效率的同时降低成本。 另一个大有前景的领域是使用区块链作为生成和共享AI数据的激励手段。通过代币化过程,个人和组织可以因向AI模型贡献有价值的数据而获得奖励,从而建立一个更具协作性和包容性的AI生态。 去中心化金融(DeFi)也是人工智能潜在的巨大贡献者,有望创造出可以被称为去中心化人工智能(DeAI)的事物。这样一来可以让人工智能技术的使用更加民主化,个人和小型实体也可以获取以前只有大公司才能使用的AI工具和服务。 加密货币和人工智能的融合不仅有可能改变金融领域,也有可能改变我们数字生活的方方面面。通过将这两种技术的优势相结合,我们可以期待这样一个人工智能的未来:AI不仅更易访问,而且更加安全和透明,也可能更加高效。说到这里,就让我们来分析一下当前AI行业的表现。 4、打破人工智能的不透明藩篱 将加密技术对金融体系的改革比作对AI系统生产的智能革命,我们可以得出一些高度相关的相似之处,并为两者的结合提供依据。 如今,人工智能公司,如OpenAI、Google Deepmind、Anthropic及许多其他公司,都在进行各自的研究和运营。 5、加密和人工智能领域的当前机遇 现在我们已经了解了AI和加密协同效应的有关基础知识,下面我们可以更详细地研究一下该领域的一些领先项目。虽然其中的大多数仍在积极努力地启动引导他们的网络、获取忠诚用户群及更广泛的来自加密社区的关注,但他们都奔走在行业的最前沿,是这个快速增长行业的优秀代表。 (1)Bittensor:去中心化人工智能模型网络 Bittensor是迄今为止Crypto & AI生态中最受欢迎也是最完善的项目。Bittensor是一个去中心化网络,旨在通过为众多分散的商品市场或“子网”创建一个平台,统一使用一个单一的代币系统,让人工智能领域更加民主化。它的使命是通过采用独特的激励机制和先进的子网架构,打造一个与OpenAI等AI领域的大型超级企业相媲美的网络。Bittensor系统可以视为是一台由区块链驱动的机器,可以有效地将AI功能带到链上。 该网络由两个关键参与者管理:矿工和验证者。矿工向网络提交预训练的人工智能模型,并因其贡献而获得奖励,而验证者则确保模型输出的有效性和准确性。这种设置创造了一个竞争环境,激励矿工不断改进他们的模型,以获得更好的性能和更高的TAO(网络的原生代币)回报。用户通过向验证者发送查询来与网络进行交互,验证者然后将这些查询分发给矿工。验证器对这些矿工的输出进行排序,并将排名最高的响应返回给用户。 Bittensor的模型开发方法是独一无二的。与许多人工智能实验室或研究机构不同,Bittensor由于训练模型的成本高且复杂并没有这么做。该网络依赖于去中心化训练机制。验证者(Validator)的任务是使用特定的数据集评估矿工生成的模型,并根据某些标准(如准确性和损失函数)对各模型打分。这种去中心化评估方式确保了模型性能得以持续改进。 Bittensor架构包括Yuma共识机制,这是一种工作量证明(PoW)和权益证明(PoS)的独特混合机制,它将资源分配到网络的子网中。子网是一个个独立的经济市场,每个市场都专注于不同的人工智能任务,如文本预测或图像生成,并且可以根据其功能选择加入或退出Yuma共识。 Bittensor是人工智能去中心化的重要一步,它提供了一个平台,可以以去中心化的方式开发、评估和改进各种人工智能模型。其独特的结构不仅激励了高质量人工智能模型的创建,还使人工智能技术的使用更加民主化,有望改变各个领域的AI开发和使用方式。 (2)Akash:开源超级云 Akash网络是一个创新的开源超级云平台,旨在安全有效地进行计算资源买卖。它的愿景是为用户提供部署自己的云基础设施以及购买和出售未使用的云资源的能力。这种灵活性不仅使云资源的使用更加民主化,还为需要扩展操作的用户提供了具成本效益的解决方案。 Akash系统的核心是一种逆向拍卖机制,用户可以根据自己的计算需求提交出价,供应商之间可以竞争提供服务,这通常会致使价格明显低于传统云系统。该系统的底层支撑是成熟可靠的Kubernetes和Cosmos等技术,确保平台安全可靠地托管应用程序。Akash的社区驱动方法确保其用户在网络的发展和治理中拥有发言权,使其成为真正的以用户为中心的公共服务。 Akash的基础设施是使用一种简单易用的、基于YAML的SDL来定义的,它允许用户跨多个领域和供应商创建复杂的部署。该特性与领先的容器编排系统Kubernetes相结合,不仅保证了部署的灵活性,还保证了应用程序托管的安全性和可靠性。此外,Akash提供持久存储解决方案,即使在重新启动后也能确保数据存留,这对于管理大型数据集的应用程序来说特别有好处。 总的来说,Akash网络作为一个去中心化的云平台脱颖而出,针对当前云服务供应商的垄断性问题提供了独特的解决方案。其利用了全球数百万数据中心中未充分利用的资源,这种模式不仅降低了成本,还提高了云原生应用程序的速度和效率。由于不需要重写专有语言,也不受供应商的限制,Akash为各种云应用程序提供了一个通用平台。 (3)Render:计算访问扩展平台 Render网络是一个区块链平台,旨在解决媒体生产中日益增长的计算需求,特别是在增强现实、虚拟现实和AI增强媒体等领域。它利用未使用的GPU周期将需要计算能力的内容创建者与拥有可用GPU资源的供应商连接起来。这种利用区块链技术的去中心化方法,确保了安全有效地处理基于GPU的任务,例如AI驱动的内容创建和优化。 Render网络的核心服务是其与人工智能的集成,这在内容创建和流程优化方面都起着至关重要的作用。该网络支持人工智能相关任务,使艺术家能够使用AI工具来生成资产并增强数字艺术品。这种集成允许创建超高分辨率的3D世界和优化的渲染过程,如AI去噪。此外,Render网络对人工智能的使用还扩展至大型艺术收藏管理和渲染工作流程优化,从而拓展了创作过程的可能性。 Render网络生态作为GPU资源市场,为艺术家、工程师和节点运营商等各方利益相关者提供服务。它使计算能力的使用更加民主化,使个人创作者和大型工作室能够负担得起复杂的渲染项目。该生态系统内交易使用RNDR代币进行,创造了一个以渲染服务为中心的充满活力的经济。随着人工智能继续重塑数字内容创作,Render网络将成为促进数字媒体领域新型创意表达和技术创新的关键参与者。 (4)Gensyn:去中心化计算平台 Gensyn是一个AI结合加密货币的项目,专注于攻破最先进的人工智能系统固有的计算挑战和资源限制。该项目旨在克服由构建基础模型所需的巨大资源需求而导致的AI发展障碍。Gensyn采用的方法是创建一个去中心化的区块链协议,以有效利用全局计算资源。 Gensyn的诞生背景突出了人工智能系统日益增加的计算复杂性,超过了可用计算供应。例如,训练像OpenAI GPT-4这样的大模型需要大量的资源,这给所有相关方造成了巨大障碍。这一动态催生了对能够有效利用所有可用计算资源的系统的需求,以应对当前解决方案的局限性,当前的解决方案要么过于昂贵,要么不足以胜任大规模人工智能任务。 Gensyn旨在通过创建一个去中心化协议来解决这个问题,该协议以一种经济高效的方式连接和验证链下深度学习任务。该协议面临着几大挑战,包括任务验证、市场动态、事前评估、隐私问题以及对深度学习模型高效并行化的需求。该协议旨在建立一个无需信任的计算网络,为提供参与激励,并提供一种方法来验证计算任务是否按承诺执行。 Gensyn协议是用于深度学习计算的第一层无需信任协议,奖励参与者贡献计算时间及执行ML任务。它使用了多种技术来验证完成的任务,包括概率学习证明、基于图形的pinpoint协议和Truebit类型的激励游戏。该系统涉及了各方参与者,如提交者(Submitter)、求解者(Solver)、验证者(Verifier)和告密者(Whistleblower),各参与者在计算过程中都有特定角色。 在实践中,Gensyn协议从任务提交到合约仲裁和结算包含了若干阶段。该协议旨在为机器学习(ML)计算创建一个透明的低成本市场,实现可扩展性和效率。该协议还为拥有强大GPU的矿工提供了一个机会,可以将他们的硬件用于机器学习计算,与主流供应商相比,成本可能更低。这种方法不仅解决了人工智能领域的计算挑战,还使人工智能资源的获取更加民主化。 (5)Fetch:人工智能经济开源平台 Fetch.ai的时间比前面提到的一些项目的时间还要长,其网站上提供各种各样的服务。Fetch核心上是一个人工智能(AI)和加密货币相结合的创新项目,旨在彻底改变经济活动和流程的执行方式。Fetch服务基于它的AI智能体,它被设计成模块化的构建块,可以被编程执行特定的任务。这些智能体能够自主连接、搜索和交易,从而创造动态市场,改变传统的经济活动格局。 Fetch的一项关键服务就是能够使传统产品与AI相结合。这是通过将它们的API与Fetch.ai智能体集成来实现的,集成过程很快,并且不需要更改底层业务应用程序。AI智能体可以与网络中的其他智能体相结合,为新的用例和商业模式开辟了可能性。此外,这些智能体还具有代表用户进行谈判和交易的能力,这让它们能够通过部署盈利。 另外,这些智能体还可以从机器学习模型中提供推论(inference),允许用户将他们的见解变现并强化他们的机器学习模型。 Fetch还引入了Agentverse,这是一种简化AI智能体部署的无代码管理服务。就像传统的无代码平台(Replit)越来越受欢迎,以及Github Copilot这样的服务让普通大众都能写代码一样,Fetch正在以自己独特的方式进一步推动web3开发的民主化。 通过Agentverse,用户可以毫不费力地启动他们的第一个智能体,这大大降低了使用先进人工智能技术的准入门槛。就人工智能引擎和智能体服务而言,Fetch利用大语言模型(LLM)来发现并将任务执行发送给适当的AI智能体。该系统不仅可以将AI应用和服务货币化,还可以作为构建、上市、分析、托管等智能体服务的综合平台。 该平台通过搜索、发现和分析等功能增强了效用。智能体可以在Agentverse中注册,以便易于在Fetch.ai平台上被识别发现,Fetch.ai平台采用了一种基于LLM的针对性搜索机制。分析工具可用于提高智能体语义描述符的有效性,从而增强其可发现性。此外,Fetch.ai为离线智能体集成了一个物联网网关,使它们能够收集消息并在重新连接时批量处理这些消息。 最后,Fetch.ai为管理智能体提供托管服务,除了托管服务之外,还提供了Agentverse的所有功能。该平台还引入了一个开源的智能体寻址和命名网络,利用了Fetch.ai的Web3网络。这就意味着一种新的Web DNS寻址方法,将区块链技术集成到系统中。总的来说,Fetch.ai提供了一个人工智能和区块链技术相结合的多功能平台,为AI智能体开发、机器学习模型货币化以及数字经济突破性的搜索和发现方法提供了工具。AI智能体和区块链技术的结合为以去中心化的高效方式自动化及优化各流程铺平了道路。 6、AI和加密行业的下一步是什么? 人工智能和区块链技术的无缝融合代表了这两个领域的关键进步。这种结合不仅仅是两种尖端技术的融合,更是一种变革性的协同作用,重新定义了数字创新和去中心化的边界。这种结合的潜在应用(正如在Fetch.ai、Bittensor、Akash Network、Render Network和Gensyn等项目所探讨的),展示了将AI的计算能力与区块链安全透明的框架相结合具有巨大的可能性和优势。 当我们展望未来时,很明显,人工智能和区块链的融合将在塑造各行各业上发挥关键作用。从增强数据安全性和完整性到创建去中心化自治组织新模式等等,这种融合有望带来更高效透明、更可访问的技术。特别是在去中心化金融领域,去中心化人工智能(DeAI)的出现可以使人工智能技术的使用更加民主化,打破传统上大公司垄断的障碍。这有望催生一个更具包容性的数字经济,在这样的未来经济中,个人和小型实体也可以享用以前遥不可及的人工智能工具和服务。 另外,AI和加密技术的集成也可以解决这两个领域中一些最紧迫的挑战。在人工智能领域,数据孤岛和训练大模型所需的巨大计算资源等问题可以通过区块链的去中心化数据管理和计算能力共享来缓解。在区块链领域,人工智能可以提高效率,自动化决策过程,并改善安全机制。开发人员、研究人员和利益相关者持续探索和利用人工智能和区块链之间的协同作用是至关重要的。这样一来,他们不仅能够促进这些独立领域的发展,还将推动整个数字领域的创新,最终让全社会受益。 来源:金色财经
lg
...
金色财经
2023-12-01
合锻智能: 聚变产业联盟是由企业、科研院所、高校组成的一个联盟
go
lg
...
品,技术配置上也覆盖了全光谱识别、智能
AI
算法
等传统及新兴技术方向,目前的智能光电分选产品在行业内配置最全、种类最多、覆盖最广。感谢您对公司的关注! 投资者:尊敬的董秘,请问子公司视觉机器,色选机龙头企业中科光电今年前三季度的营收跟利润是多少(含政府补贴)?每年的增长率是多少? 合锻智能董秘:您好,相关信息请您参阅公司定期报告,感谢您对公司的关注! 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-11-30
上一页
1
•••
458
459
460
461
462
•••
488
下一页
24小时热点
2009年来“最冷”一年!又一数据传来“坏消息” 全球市场“跌”声再起、黄金一枝独秀
lg
...
特朗普政府突传重磅!英媒:美国在亚洲贸易协定中加入“毒丸条款”以对抗中国
lg
...
突发!一则数据搅乱降息押注,美元短线跳水黄金重返4000
lg
...
特斯拉股东大会登场:马斯克或获8780亿美元天价薪酬,AI投资与公司治理改革成焦点
lg
...
特朗普政府祭出大动作!这两种重要金属被列入“关键矿产”清单 恐被征关税
lg
...
最新话题
更多
#AI热潮:从芯片到资本的竞赛#
lg
...
24讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
36讨论
#VIP会员尊享#
lg
...
1989讨论
#比特日报#
lg
...
14讨论
#Web3项目情报站#
lg
...
6讨论